
1

Lecture 22: Image-based
Rendering

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• In-class exam next week Nov 18th

– Will post last year’s exam on CMS

• HW 3
– First, make it work
– Then optimize
– Use results reported as guide

© Kavita Bala, Computer Science, Cornell University

Complexity
• Lighting: many lights, environment maps

– Global illumination, shadows

• Materials: BRDFs, textures

• Geometry: Level-of-detail, point-based
representations

• All: image-based rendering

© Kavita Bala, Computer Science, Cornell University

Idea

• Can we use photographs?

• Photographs capture
• High geometric complexity
• High lighting and material (BRDF) complexity

• How do we use them?

© Kavita Bala, Computer Science, Cornell University

Image-based Approaches

• Combine vision and graphics
• Given images and some geometry

– Render new images from existing images
– New idea: Image is input and rendering primitive
– No (or very little) geometry recovery

Images Images
Analyze

And
Reproject

Analyze Geometry Simulate

© Kavita Bala, Computer Science, Cornell University

Pros

• Promising approach to handle complexity
• Benefits:

– No labor-intensive modeling
– Captures high geometric/material

complexity
– Rendering time constant: proportional to

image size, independent of scene
complexity

2

© Kavita Bala, Computer Science, Cornell University

The Plenoptic Function

• P(x, y, z, θ, ϕ): radiance over all points in
space and in all directions
– 5D function: theoretical concept

• Why do we care? Rendering computes P

(x, y, z)

(θ, ϕ)

© Kavita Bala, Computer Science, Cornell University

Images are subset of P

• Think of an image in a new way!!!
• Image = radiance for each ray in image

= radiance through a collection of rays
= subset of plenoptic function P

• 1 Input image = subset of P
• Several input images approximate P
• All possible images = P

© Kavita Bala, Computer Science, Cornell University

IBR idea
• Idea: Replace scene by images

• Output: new viewpoint
– Look up plenoptic fn. look up input images

• What are the assumptions?

– Static scene

– Fixed lighting

– Existing scene

© Kavita Bala, Computer Science, Cornell University

Approaches
• Systems that have no depth

– Quicktime VR
– Plenoptic Modeling
– Lightfields/Lumigraphs
– Image-based visual hulls

• Systems that have full geometry
– Surface Lightfields

• Systems that have partial geometry: Image-
Based Modeling
– Façade

• Synthetic systems: impostors

© Kavita Bala, Computer Science, Cornell University

QuickTime VR
• Fixed viewpoint + full range of viewing

directions (3600)
• Panoramic images:

– Stitch image to form panorama
– Can look around panorama

© Kavita Bala, Computer Science, Cornell University

Quicktime VR

• Demo

• Pros
– Simple, fast, effective

• Cons
– Camera position is confined to predefined

observer positions
– Distortion when user deviates from position

3

© Kavita Bala, Computer Science, Cornell University

McMillan’s IBR

• Input: set of images (panoramic)
• Output: images from new viewpoint

– Removes constraint on new viewpoint position

• How?
– Reconstruct the plenoptic function from the images
– Assumes depth/disparity information

© Kavita Bala, Computer Science, Cornell University

McMillan’s IBR
• Construct panorama from one viewpoint
• Collect many such panoramas

© Kavita Bala, Computer Science, Cornell University

Pixel Reprojection

• Goal: Want image at new viewpoint
• Reproject points from input images

© Kavita Bala, Computer Science, Cornell University

Pixel Reprojection

• Assume have depth/disparity per pixel
• If pixel (x,y) sees point P,
• P = C + t D
• C is camera position,
• D is direction from C through (x,y)
• t is distance along D

(x,y)D

Camera C

P
t

© Kavita Bala, Computer Science, Cornell University

Pixel Reprojection

• Direction D

D = C + x i + y j + d k

(x, y) = pixel

• C = camera center
• d = distance of image plane from C
• C, d are known

(x,y)

D
C

P

i

j

-k

© Kavita Bala, Computer Science, Cornell University

P = C0 + t0 D0(x,y)

C0 + t0 D0 = C1 + t1 D1

t1 D1 = (C0 – C1) + t0 D0

C0, C1, D0, t0 are known

t1 D1 defines the reprojected pixel

Reprojection

(x,y)D0

New Camera C1
Camera C0

4

© Kavita Bala, Computer Science, Cornell University

Pixel Reprojection

• D1 = C1 + x1 i + y1 j + d1 k

• Solve for x1, y1 and t1

D0

New Camera C1
Camera C0

t1

(x1,y1)

© Kavita Bala, Computer Science, Cornell University

Pixel Reprojection

• Reproject points from input panoramas
– Project points onto the new image plane
– Color pixel upon intersection with new image

plane

(x,y)D

New CameraCamera C

© Kavita Bala, Computer Science, Cornell University

Reprojection Example

© Kavita Bala, Computer Science, Cornell University

Problems with Reprojection
• Holes: Information in new view not in

original (disocclusion)

• Solutions:
– Interpolation
–Multiple images
–Re-render missing pixels (only for

synthetic scenes!)

© Kavita Bala, Computer Science, Cornell University

Problems with Reprojection
• Aliasing: pixels do not project to pixel

centers
– Solution: Splatting

• Multiple pixels project to same pixel in new
view
– Solution: z-buffer

© Kavita Bala, Computer Science, Cornell University

How to compute depth/disparity?

• Assumption: disparity is known
• Correspondences specified by user
• Recover point (depth/disparity)

Point where rays intersect

C1

C0

5

© Kavita Bala, Computer Science, Cornell University

Computing depth/disparity

• P = C0 + t0 D0(x,y)

• C0 + t0 D0 = C1 + t1 D1

• C0, C1, D0, D1 are known

• Solve for t0 and t1

C1

C0

D0D1

© Kavita Bala, Computer Science, Cornell University

Epipolar geometry

• Specifying correspondence: tedious
• Disparity/depth recovery using epipolar

geometry
• Ray corresponds to epipolar line in C1’s

image plane

C1
C0

Epipolar line

© Kavita Bala, Computer Science, Cornell University

Epipolar geometry

• Different depths correspond to different
points on epipolar line

C1
C0

Epipolar line

© Kavita Bala, Computer Science, Cornell University

Epipolar geometry

• We don’t know depth, but we know the ray
• Given color at pixel (x,y) search along

epipolar line for pixel of same color
• Find match, recover depth/disparity
• Problem?

C1

C0

Epipolar line

© Kavita Bala, Computer Science, Cornell University

Demo

• Cylindrical epipolar geometry

© Kavita Bala, Computer Science, Cornell University

Plenoptic Issues
• Hard to get accurate depth/disparity

– View-dependence

• From new viewpoints have holes to fill
– Interpolation blurs

6

© Kavita Bala, Computer Science, Cornell University

Lumigraph / Light field
• Idea: capture many photographs from

different views

• No depth information

• Render image from new viewpoint using
existing images
– Have to lie outside object

© Kavita Bala, Computer Science, Cornell University

What is an image?
• Image = rays going through one point

• Usually restricted to viewing frustum, but
can also be panoramic

© Kavita Bala, Computer Science, Cornell University

What is an image?
• Image = rays going through 1 point +

image plane

• 2D function (position on image plane)
© Kavita Bala, Computer Science, Cornell University

What is an object?

• Outgoing radiance field of an object

• Radiance varies at points on surface
– 2D function (position on surface)

• Radiance varies in all directions
– 2D function

© Kavita Bala, Computer Science, Cornell University

What is an object?

• All possible images of an object

• We don’t really need the object
© Kavita Bala, Computer Science, Cornell University

Replace object by images

• Object is only defined by its radiance field
• Images capture all information about object

• New viewpoint: look up appropriate images

stuff

7

© Kavita Bala, Computer Science, Cornell University

Questions
• How to capture the input images?

• How to store the images efficiently for
retrieval?

• How to render new images?

© Kavita Bala, Computer Science, Cornell University

Rays: 2 plane parameterization

(x, y, z)

(θ, ϕ)

(s,t)

(u,v)

p

© Kavita Bala, Computer Science, Cornell University

Lumigraph organization
• Hold (s,t) constant: an image

(s,t) (u,v)

© Kavita Bala, Computer Science, Cornell University

Lumigraph organization
• Hold (s,t) constant: an image

(s,t) (u,v)

© Kavita Bala, Computer Science, Cornell University

Lumigraph organization
• Is this an image?

(s,t) (u,v)

© Kavita Bala, Computer Science, Cornell University

LightField/Lumigraph Idea
• Move camera carefully in (s,t) plane
• Each image is a 2D slice of 4D function
• Hold (s,t) constant and get an image

(s,t)

(u,v)

u

v

8

© Kavita Bala, Computer Science, Cornell University

Fish LightField
• Images are a database of rays

– store in 4D array
• Demo (1,2)

© Kavita Bala, Computer Science, Cornell University

Lumigraph - rendering
• Look for closest (s,t,u,v) tuplet

(s,t) (u,v)

© Kavita Bala, Computer Science, Cornell University

Lumigraph - rendering
• Interpolation of 16 values

(s,t) (u,v)
© Kavita Bala, Computer Science, Cornell University

Lumigraph - rendering
• From the new viewpoint

– Cast a ray for each pixel of image
– Intersect it with the (s,t) and (u,v) plane
– Find the closest (s,t) point as a reference

image
– Select closest (u,v) point (i.e., ray whose

orientation is closest to desired orientation)
– Do quadralinear interpolation

• Demo 1
• Demo 2

© Kavita Bala, Computer Science, Cornell University

Lumigraph organization
• Higher resolution near object

– captures texture

• Lower resolution far away
– captures direction

(s,t) (u,v)
© Kavita Bala, Computer Science, Cornell University

LightField/Lumigraph Pros/Cons
• Pros

– No depth information at all
– Interactive performance

• Cons
– Lots of images!!! (w/ compression 100s MB)
– Specialized hardware to compute images
– Constrained to lie outside the object
– Works for small objects
– Blurry results

