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Lecture 9: Monte Carlo 
Rendering

Chapters 4 and 5 in Advanced GI

Fall 2004
Kavita Bala

Computer Science
Cornell University
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Homework
• HW 1out, due Oct 5

• Assignments done separately
– Might revisit this policy for later assignments
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Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point 

(branching factor)

• Path Tracing
– Branching factor == 1

© Kavita Bala, Computer Science, Cornell University

Algorithm so far ...
• Shoot # viewing rays through each pixel

• Shoot # indirect rays, sampled over 
hemisphere
– Path tracing shoots only 1 indirect ray

• Terminate recursion using Russian 
Roulette
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Stratified Sampling

• Samples could be arbitrarily close

• Split integral in subparts

• Estimator

• Variance:
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Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples
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Quasi Monte Carlo
• Eliminates randomness to find well-

distributed samples
• Samples are determinisitic but “appear” 

random
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Next Event Estimation
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• So … sample direct and indirect with 
separate MC integration
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How to sample direct illumination
• Sampling a single light source 

• Sampling for many lights
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Direct Illumination
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Estimator for direct lighting
• Pick a point on the light’s surface with pdf

• For N samples, direct light at point x is:
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PDF for sampling light
• Uniform

• Pick a point uniformly over light’s area
– Can stratify samples

• Estimator:
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Different pdfs
• Uniform

• Solid angle sampling
– Removes cosine and distance from integrand
– Better when significant foreshortening
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Parameters
• How to distribute paths within light source?

– Uniform
– Solid angle
– What about light distribution?

• How many paths (“shadow-rays”)?
– Total?
– Per light source? (~intensity, importance, …)
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Formulation over all lights
• When M is large, each direct lighting 

sample is very expensive

• We would like to importance sample the 
lights

• Instead of M integrals

• Formulation over 1 integration domain
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Why?
• Do not need a minimum of M rays/sample
• Can use only one ray/sample

• Still need N samples, but 1 ray/sample

• Ray is distributed over the whole 
integration domain
– Can importance sample the lights
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Anti-aliasing

lights

eye

pixel 10 rays 10 rays

• Can piggy-back on the anti-aliasing of pixel
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How to sample the lights?
• A discrete pdf pL(ki) picks the light ki

• A surface point is then picked with pdf
p(yi|ki)

• Estimator with N samples:
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Strategies for picking light

– Uniform

– Area

– Power
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Don’t take visibility into account
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Research on many lights
• Ward ‘91

• Shirley, Wang, Zimmerman  ‘94

• Fernandez, Bala, Greenberg ‘02

• Wald and Slusallek ‘03
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Alternative direct paths
• Shoot paths at random over hemisphere; 

check if they hit light source

– paths not used efficiently
– noise in image

– might work if light source 
occupies large portion on 
hemisphere
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Alternative direct paths

1 path / point 16 paths / point 256 paths / point
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Direct paths
• Different path generators produce different 

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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Indirect Illumination
• Paths of length > 1

• Many different path generators possible

• Efficiency depends on:
– BRDFs along the path
– Visibility function
– ...
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Indirect paths - surface sampling
• Simple generator (path length = 2):

– select point on light source
– select random point on surfaces

– per path:
2 visibility checks
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Indirect paths - surface sampling
• Indirect illumination (path length 2):

• 2 visibility values cause noise
– which might be 0
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Indirect paths - source shooting
• Shoot ray from light source, find hit location
• Connect hit point to receiver

– per path:
1 ray intersection
1 visibility check
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Indirect paths - receiver gathering
• Shoot ray from receiver point, find hit location
• Connect hit point to random point on light source

– per path:
1 ray intersection 
1 visibility check
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Indirect paths

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver gathering

- 1 visibility term
- 1 ray intersection

Surface sampling

- 2 visibility terms;
can be 0
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More variants ...
• Shoot ray from receiver point, find hit 

location
• Shoot ray from hit point, check if on light 

source
– per path:

2 ray intersections
Le might be zero
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Indirect paths
• Same principles apply to paths of length > 2

– generate multiple surface points
– generate multiple bounces from light sources 

and connect to receiver
– generate multiple bounces from receiver and 

connect to light sources
– …

• Estimator and noise characteristics change 
with path generator
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Indirect paths

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

q = generate_indirect_path;
est_rad += energy_transfer(q) / p(q);

est_rad = est_rad / n;
return(est_rad);
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Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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• Uniform sampling over the hemisphere

)2/(1)( π=Θp

Sampling strategies
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• Sampling according to the cosine factor
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Sampling strategies
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• Sampling according to the BRDF

)(~)( Ψ↔ΘΘ rfp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→

x

dnfxLxL xr ω),cos()()()(

© Kavita Bala, Computer Science, Cornell University

Example: sample according to BRDF

• Discrete pdf q1, q2, q3 1321 =++ qqq
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• Sampling according to the BRDF times 
the cosine
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Sampling strategies
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Comparison

With importance sampling
(brdf on sphere)

Without importance sampling


