Lecture 9: Monte Carlo Rendering
 Chapters 4 and 5 in Advanced Gl

Fall 2004
Kavita Bala
Computer Science
Cornell University

Homework

- HW 1out, due Oct 5
- Assignments done separately
- Might revisit this policy for later assignments

Stochastic Ray Tracing

- Parameters?
- \# starting rays per pixel
- \# random rays for each surface point (branching factor)
- Path Tracing
- Branching factor == 1

Algorithm so far ...

- Shoot \# viewing rays through each pixel
- Shoot \# indirect rays, sampled over hemisphere
- Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

Performance/Error

- Want better quality with smaller number of samples
- Fewer samples/better performance
- Stratified sampling
- Quasi Monte Carlo: well-distributed samples
- Faster convergence
- Importance sampling: next-event estimation

Stratified Sampling

- Samples could be arbitrarily close
- Split integral in subparts

$$
I=\int_{X_{1}} f(x) d x+\ldots+\int_{X_{x}} f(x) d x
$$

- Estimator

$$
\bar{I}_{\text {strat }}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(\bar{x}_{i}\right)}{p\left(\bar{x}_{i}\right)}
$$

- Variance: $\sigma_{\text {strut }} \leq \sigma_{\text {sec }}$

Higher Dimensions

- Stratified grid sampling:

$\rightarrow N^{d}$ samples
- N-rooks sampling:

$\rightarrow N$ samples

Quasi Monte Carlo

- Eliminates randomness to find welldistributed samples
- Samples are determinisitic but "appear" random

Performance/Error

- Want better quality with smaller number of samples
- Fewer samples/better performance
- Stratified sampling
- Quasi Monte Carlo: well-distributed samples
- Faster convergence
- Importance sampling: next-event estimation

How to sample direct illumination

- Sampling a single light source
- Sampling for many lights

Estimator for direct lighting

- Pick a point on the light's surface with pdf $p(y)$
- For N samples, direct light at point x is:

$$
E(x)=\frac{1}{N} \sum_{i=1}^{N} \frac{f_{r} L_{\text {sourre }} \frac{\cos \theta_{x} \cos \theta_{\bar{y}_{i}} V i s\left(x, \bar{y}_{i}\right)}{r_{i \bar{x}_{i}}^{2}}}{p\left(\bar{y}_{i}\right)}
$$

PDF for sampling light

- Uniform

$$
p(y)=\frac{1}{\text { Area }_{\text {source }}}
$$

- Pick a point uniformly over light's area - Can stratify samples
- Estimator:
$E(x)=\frac{\text { Area }_{\text {source }}}{N} \sum_{i=1}^{N} f_{r} L_{\text {source }} \frac{\cos \theta_{x} \cos \theta_{\bar{y}_{i}}}{r_{x \bar{x}_{i}}^{2}} \operatorname{Vis}\left(x, \bar{y}_{i}\right)$

Different pdfs

- Uniform

$$
p(y)=\frac{1}{\text { Area }_{\text {source }}}
$$

- Solid angle sampling
- Removes cosine and distance from integrand
- Better when significant foreshortening
$E(x)=\frac{1}{N} \sum_{i=1}^{N} \frac{f_{i} L_{\text {source }} \frac{\cos \theta_{x} \cos \theta_{\overline{\bar{x}_{1}}}}{r_{x i s}\left(x, \bar{y}_{i}\right)}}{p\left(\bar{y}_{i}\right)}$

Parameters

- How to distribute paths within light source?
- Uniform
- Solid angle
- What about light distribution?
- How many paths ("shadow-rays")?
- Total?
- Per light source? (~intensity, importance, ...)

Formulation over all lights

- When M is large, each direct lighting sample is very expensive
- We would like to importance sample the lights
- Instead of M integrals
$L(x \rightarrow \Theta)=\sum_{i=1}^{M} \int_{A_{\text {tance }}} f_{r}(x,-\Psi \leftrightarrow \Theta) \cdot L_{\text {source }}(y \rightarrow-\Psi) \cdot G(x, y) \cdot d A_{y}$
- Formulation over 1 integration domain

$$
\begin{aligned}
L(x \rightarrow \Theta)=\int_{A_{\text {all lights }}} f_{r}(x,-\Psi \leftrightarrow \Theta) \cdot L_{\text {source }}(y \rightarrow-\Psi) \cdot G(x, y) \cdot d A_{y} \\
\text { © Kavita Bala, Computer Science, Cornell University }
\end{aligned}
$$

Why?

- Do not need a minimum of M rays/sample
- Can use only one ray/sample
- Still need N samples, but 1 ray/sample
- Ray is distributed over the whole integration domain
- Can importance sample the lights

Anti-aliasing

- Can piggy-back on the anti-aliasing of pixel

How to sample the lights?

- A discrete pdf $p_{L}\left(k_{i}\right)$ picks the light k_{i}
- A surface point is then picked with pdf $p\left(y_{i} \mid k_{i}\right)$
- Estimator with N samples:

$$
E(x)=\frac{1}{N} \sum_{i=1}^{N} \frac{f_{r} L_{\text {source }} G\left(x, \bar{y}_{i}\right)}{p_{L}\left(k_{i}\right) p\left(y_{i} \mid k_{i}\right)}
$$

Strategies for picking light

- Uniform $p_{L}(k)=\frac{1}{M}$
- Area

- Power $\quad p_{L}(k)=\frac{P_{k}}{\sum P_{k}}$

Don't take visibility into account

Research on many lights

- Ward ‘91
- Shirley, Wang, Zimmerman '94
- Fernandez, Bala, Greenberg ‘02
- Wald and Slusallek ‘03

Alternative direct paths

- Shoot paths at random over hemisphere; check if they hit light source

- paths not used efficiently
- noise in image
- might work if light source occupies large portion on hemisphere

Alternative direct paths

1 path / point

16 paths / point

256 paths / point

Direct paths

- Different path generators produce different estimators and different error characteristics
- Direct illumination general algorithm:

```
compute_radiance (point, direction)
    est_rad = 0;
    for (i=0; i<n;i++)
            p = generate_path;
            est_rad += energy_transfer(p) / probability(p);
    est_rad = est_rad / n;
    return(est_rad);
```


Stochastic Ray Tracing

- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term
- Optimizations:
- Stratified sampling
- Importance sampling
- Combine multiple probability density functions into a single PDF

Indirect Illumination

- Paths of length > 1
- Many different path generators possible
- Efficiency depends on:
- BRDFs along the path
- Visibility function
- ...

Indirect paths - surface sampling

- Simple generator (path length = 2):
- select point on light source
- select random point on surfaces

- per path:
- 2 visibility checks

Indirect paths - surface sampling

- Indirect illumination (path length 2):
$L(x \rightarrow \Theta)=\int_{A_{\text {sarewe }}} \int_{A} L\left(y \rightarrow \Psi_{1}\right) f_{r}\left(z,-\Psi_{1} \leftrightarrow \Psi_{2}\right) G(z, y) f_{r}\left(x,-\Psi_{2} \leftrightarrow \Theta\right) G(z, x) d A_{z} d A_{y}$
$\langle L(x \rightarrow \Theta)\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{L\left(y_{i} \rightarrow \Psi_{1 i}\right) f_{r}\left(z_{i},-\Psi_{1 i} \leftrightarrow \Psi_{2 i}\right) G\left(z_{i}, y_{i}\right) f_{r}\left(x,-\Psi_{2 i} \leftrightarrow \Theta\right) G\left(z_{i}, x\right)}{p_{y}\left(y_{i}\right) p_{z}\left(z_{i}\right)}$
- 2 visibility values cause noise
- which might be 0

Indirect paths - source shooting

- Shoot ray from light source, find hit location
- Connect hit point to receiver

- per path:
- 1 ray intersection
- 1 visibility check

Indirect paths - receiver gathering

- Shoot ray from receiver point, find hit location
- Connect hit point to random point on light source

Indirect paths

Surface sampling

- 2 visibility terms; can be 0

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver gathering

- 1 visibility term
- 1 ray intersection

More variants ...

- Shoot ray from receiver point, find hit location
- Shoot ray from hit point, check if on light source

- per path:
- 2 ray intersections
- L_{e} might be zero

Indirect paths

- Same principles apply to paths of length > 2
- generate multiple surface points
- generate multiple bounces from light sources and connect to receiver
- generate multiple bounces from receiver and connect to light sources
- ...
- Estimator and noise characteristics change with path generator

Indirect paths

```
compute_radiance (point, direction)
    est_rad = 0;
    for (i=0; i<n; i++)
            q = generate_indirect_path;
            est_rad += energy_transfer(q) / p(q);
    est_rad = est_rad / n;
    return(est_rad);
```


Stochastic Ray Tracing

- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term
- Optimizations:
- Stratified sampling
- Importance sampling
- Combine multiple probability density functions into a single PDF

Sampling strategies

- Uniform sampling over the hemisphere

$p(\Theta)=1 /(2 \pi)$

Sampling strategies

- Sampling according to the cosine factor

Sampling strategies

- Sampling according to the BRDF

$$
p(\Theta) \sim f_{r}(\Theta \leftrightarrow \Psi)
$$

Example: sample according to BRDF

- Discrete pdf $\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3} \quad q_{1}+q_{2}+q_{3}=1$

$$
L_{\text {indirect }}=L_{\text {diffise }}+L_{\text {specular }}
$$

$$
\left\langle L_{\text {indirect }}\right\rangle=\left\{\begin{array}{c}
\left.\frac{L\left(x \leftarrow \Psi_{i}\right) k_{d} \cos \left(N, \Psi_{i}\right)}{q_{1} p_{1}\left(\Psi_{i}\right)} \right\rvert\, \xi<q_{1} \\
\left.\frac{L\left(x \leftarrow \Psi_{i}\right) k_{s} \cos ^{n}\left(R, \Psi_{i}\right) \cos \left(N, \Psi_{i}\right)}{q_{2} p_{2}\left(\Psi_{i}\right)} \right\rvert\, q_{1} \leq \xi<q_{2} \\
0 \mid \text { otherwise }
\end{array}\right\}
$$

Sampling strategies

- Sampling according to the BRDF times the cosine

$$
p(\Theta) \sim f_{r}(\Theta \leftrightarrow \Psi) \cos \theta
$$

Comparison

With importance sampling (brdf on sphere)

Without importance sampling

