Lecture 8: Monte Carlo Rendering
 Chapters 4 and 5 in Advanced GI

Fall 2004
Kavita Bala
Computer Science
Cornell University

Homework

- HW 1out, due Oct 5
- Assignments done separately
- Might revisit this policy for later assignments

How to compute?
$\mathrm{L}(\mathrm{x} \rightarrow \Theta)=$?

Check for $L_{e}(x \rightarrow \Theta)$

Now add $L_{r}(x \rightarrow \Theta)=$

$\int f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \left(\Psi, n_{x}\right) \cdot d \omega_{\Psi}$

How to compute?

- Monte Carlo!
- Generate random directions on hemisphere Ω_{x}, using pdf $\mathrm{p}(\Psi)$

How to compute?

- evaluate $\mathrm{L}\left(\mathrm{x} \leftarrow \Psi_{\mathrm{i}}\right)$?
- Radiance is invariant along straight paths
- $\operatorname{vp}\left(x, \Psi_{\mathrm{i}}\right)=$ first visible point

- $\mathrm{L}\left(\mathrm{x} \leftarrow \Psi_{\mathrm{i}}\right)=\mathrm{L}\left(\mathrm{vp}\left(\mathrm{x}, \Psi_{\mathrm{i}}\right) \rightarrow \Psi_{\mathrm{i}}\right)$

How to compute? Recursion ...

- Recursion
- Each additional bounce adds one more level of indirect light
- Handles ALL light transport

- "Stochastic Ray Tracing"

Russian Roulette

- Pick some 'absorption probability' α
- probability $1-\alpha$ that ray will bounce
- estimated radiance becomes L/ (1- α)
- E.g. $\alpha=0.9$
- only 1 chance in 10 that ray is reflected
- estimated radiance of that ray is multiplied by 10
- instead of shooting 10 rays, we shoot only 1 , but count the contribution of this one 10 times
© Kavita Bala, Computer Science, Cornell University

Algorithm so far ...

- Shoot viewing ray through each pixel
- Shoot \# indirect rays, sampled over hemisphere
- Terminate recursion using Russian Roulette

Stochastic Ray Tracing

- Parameters?
- \# starting rays per pixel
- \# random rays for each surface point (branching factor)
- Path Tracing
- Branching factor $==1$

Comparison

1 centered viewing ray 100 random shadow rays per viewing ray

100 random viewing rays 1 random shadow ray per viewing ray

Algorithm so far ...

- Shoot \# viewing rays through each pixel
- Shoot \# indirect rays, sampled over hemisphere
- Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

Stratified Sampling

- Samples could be arbitrarily close
- Split integral in subparts

- Estimator

- Variance: $\sigma_{\text {staut }} \leq \sigma_{\text {sec }}$

Stratified Sampling

9 shadow rays not stratified

9 shadow rays stratified

2 Dimensions

- Problem for higher dimensions
- Sample points can still be arbitrarily close to each other

Higher Dimensions

- Stratified grid sampling:

$\rightarrow N^{d}$ samples
- N-rooks sampling:

$\rightarrow N$ samples

Other types of Sampling

- How does it relate to regular sampling

Random sampling

Regular sampling

Quasi Monte Carlo

- Eliminates randomness to find welldistributed samples
- Samples are determinisitic but "appear" random

Example: Hammersley

- Radical inverse $\phi_{p}(\mathrm{i})$ for primes p
- Reflect digits (base p) about decimal point $\square \phi_{2}(i): 111010_{2} \rightarrow 0.010111$
- For N samples, a Hammersley point - (i/N, $\phi_{2}(\mathrm{i})$)
- For more dimensions:
$-X_{i}=\left(i / N, \phi_{2}(i), \phi_{3}(i), \phi_{5}(i), \phi_{7}(i), \phi_{11}(i), \ldots.\right)$

Quasi Monte Carlo

- Converges as fast as stratified sampling
- Does not require knowledge about how many samples will be used
- Using QMC, directions evenly spaced no matter how many samples are used
- Samples properly stratified-> better than pure MC

Performance/Error

- Want better quality with smaller number of samples
- Fewer samples/better performance
- Stratified sampling
- Quasi Monte Carlo: well-distributed samples
- Faster convergence
- Importance sampling: next-event estimation

- Importance Sampling: compute direct illumination separately!

Direct Illumination

- Paths of length 1 only, between receiver and light source

How to sample direct illumination

- Sampling a single light source
- Sampling for many lights
- Hemisphere integration
$L(x \rightarrow \Theta)=L_{e}(x \rightarrow \Theta)+\int_{\Omega} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_{x} \cdot d \omega_{\psi}$
- Area integration (over polygons from set A)

Estimator for direct lighting

- Pick a point on the light's surface with pdf $p(y)$
- For N samples, direct light at point x is:

PDF for sampling light

- Uniform

- Pick a point uniformly over light's area
- Can stratify samples
- Estimator:

Generating direct paths

- Pick surface points y_{i} on light source
- Evaluate direct illumination integral

Different pdfs

- Uniform

- Solid angle sampling
- Removes cosine and distance from integrand
- Better when significant foreshortening

Parameters

- How to distribute paths within light source?
- Uniform
- Solid angle
- What about light distribution?
- How many paths ("shadow-rays")?
- Total?
- Per light source? (~intensity, importance, ...)

Lighting: point sources

Scenes with many lights

- Various choices:
- Shadow rays per light source
- Distribution of shadow rays within a light source
- Total \# rays = M N
- Where, $M=$ \#lights, $N=$ \#rays per source

Why?

- Do not need a minimum of M rays/sample
- Can use only one ray/sample
- Still need N samples, but 1 ray/sample
- Ray is distributed over the whole integration domain
- Can importance sample the lights

How to sample the lights?

- A discrete pdf $p_{L}\left(k_{i}\right)$ picks the light k_{i}
- A surface point is then picked with pdf $p\left(y_{i} \mid k_{i}\right)$
- Estimator with N samples:
$E(x)=\frac{1}{N} \sum_{i=1}^{N} \frac{f_{L} L_{\text {source }} G\left(x, \bar{y}_{i}\right)}{p_{L}\left(k_{i}\right) p\left(y_{i} \mid k_{i}\right)}$

Formulation over all lights

- When M is large, each direct lighting sample is very expensive
- We would like to importance sample the lights
- Instead of M integrals
$L(x \rightarrow \Theta)=\sum_{i=1} \int f_{r}(x,-\Psi \leftrightarrow \Theta) \cdot L_{\text {soance }}(y \rightarrow-\Psi) \cdot G(x, y) \cdot d A_{y}$
- Formulation over 1 integration domain
$L(x \rightarrow \Theta)=\int f_{r}(x,-\Psi \leftrightarrow \Theta) \cdot L_{\text {source }}(y \rightarrow-\Psi) \cdot G(x, y) \cdot d A$
© Kavita Bala, Computer Science, Cornell University

Strategies for picking light
- Uniform $p_{L}(k)=\frac{1}{M}$
$\text { - Area } \quad p_{L}(k)=\frac{A_{k}}{\sum A_{k}}$
$\text { - Power } \quad p_{L}(k)=\frac{P_{k}}{\sum P_{k}}$

Example for 2 lights

- Light 0 has power 1, Light 1 has power 2
- Using power for pdf:
$-p_{\mathrm{L}}\left(\mathrm{L}_{0}\right)=1 / 3, p_{\mathrm{L}}\left(\mathrm{L}_{1}\right)=2 / 3$

- Overall pdf

Example for 2 lights

- If
$\frac{1}{3} \leq \xi_{0}<1$
- Sample Light 1 and compute estimate e1
- Overall estimate is

Example for 2 lights

- Pick a random value:
- If
- Sample Light 0 and compute estimate e0
- Overall estimate is

Example for 2 lights
- If
$\frac{1}{3} \leq \xi_{0}<1$
- Sample Light 1 and compute estimate e1
- Overall estimate is $\frac{e_{1}}{2}$

How to sample light?

- Once light is picked, can pick two random numbers ξ_{1}, ξ_{2} according to $\mathrm{p}_{\mathrm{L} 0}(\mathrm{y})$, $p_{\mathrm{L} 1}(\mathrm{y})$
- To decrease variance we should reuse
- But, already used information in ξ_{0} to pick the light

