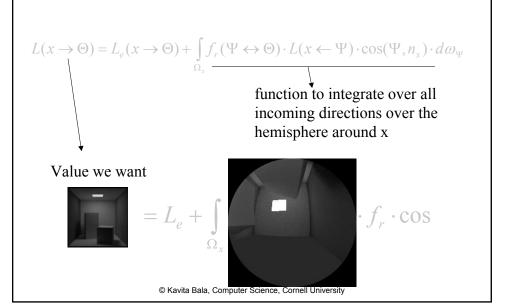
Lecture 8: Monte Carlo Rendering Chapters 4 and 5 in Advanced GI

Fall 2004
Kavita Bala
Computer Science
Cornell University

Homework

- HW 1out, due Oct 5
- · Assignments done separately
 - Might revisit this policy for later assignments

Rendering Equation

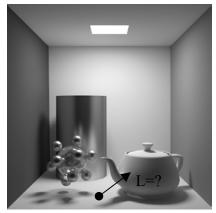


How to compute?

$$L(x\rightarrow\Theta) = ?$$

Check for $L_e(x\rightarrow \Theta)$

Now add $L_r(x \rightarrow \Theta) =$



$$\int_{\Omega_{-}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_{x}) \cdot d\omega_{\Psi}$$

How to compute?

- Monte Carlo!
- Generate random directions on hemisphere Ω_x, using pdf p(Ψ)

$$L(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\Psi_i \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi_i) \cdot \cos(\Psi_i, n_x)}{p(\Psi_i)}$$

© Kavita Bala, Computer Science, Cornell University

How to compute?

- evaluate L(x←Ψ_i)?
- Radiance is invariant along straight paths
- $vp(x, \Psi_i)$ = first visible point

•
$$L(x \leftarrow \Psi_i) = L(vp(x, \Psi_i) \rightarrow \Psi_i)$$

How to compute? Recursion ...

- Recursion
- · Each additional bounce adds one more level of indirect light

- Handles ALL light transport
- "Stochastic Ray Tracing"

© Kavita Bala, Computer Science, Cornell University

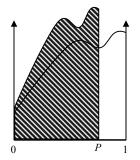
Russian Roulette

Integral

$$I = \int_{0}^{1} f(x)dx = \int_{0}^{1} \frac{f(x)}{P} P dx = \int_{0}^{P} \frac{f(y/P)}{P} dy$$

Estimator

$$\left\langle I_{roulette} \right\rangle = \begin{cases} \frac{f(x_i)}{P} & \text{if } x_i \leq P, \\ 0 & \text{if } x_i > P. \end{cases}$$



Variance $\sigma_{roulette} > \sigma$

$$\sigma_{roulette} > \sigma$$

Russian Roulette

- Pick some 'absorption probability' α
 - probability 1- α that ray will bounce
 - estimated radiance becomes L/ $(1-\alpha)$
- E.g. α = 0.9
 - only 1 chance in 10 that ray is reflected
 - estimated radiance of that ray is multiplied by 10
 - instead of shooting 10 rays, we shoot only 1, but count the contribution of this one 10 times

© Kavita Bala, Computer Science, Cornell University

Algorithm so far ...

- Shoot viewing ray through each pixel
- Shoot # indirect rays, sampled over hemisphere
- Terminate recursion using Russian Roulette

Pixel Anti-Aliasing

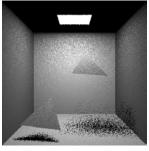
- Compute radiance only at center of pixel: jaggies
- · Simple box filter:
- · ... evaluate using MC

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing

- · Parameters?
 - # starting rays per pixel
 - # random rays for each surface point (branching factor)
- · Path Tracing
 - Branching factor == 1

Path tracing



1 ray / pixel

10 rays / pixel

100 rays / pixel

 Pixel sampling + light source sampling folded into one method

© Kavita Bala, Computer Science, Cornell University

Comparison

1 centered viewing ray100 random shadow rays per viewing ray

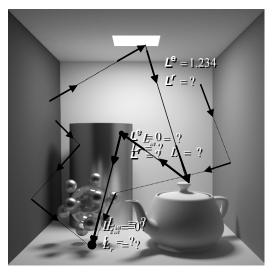
100 random viewing rays1 random shadow ray per viewing ray

Algorithm so far ...

- Shoot # viewing rays through each pixel
- Shoot # indirect rays, sampled over hemisphere
 - Path tracing shoots only 1 indirect ray
- Terminate recursion using Russian Roulette

© Kavita Bala, Computer Science, Cornell University

Algorithm



© Kavita Bala, Computer Science, Cornell University

Performance/Error

- · Want better quality with smaller number of samples
 - Fewer samples/better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples
- Faster convergence
 - Importance sampling: next-event estimation

© Kavita Bala, Computer Science, Cornell University

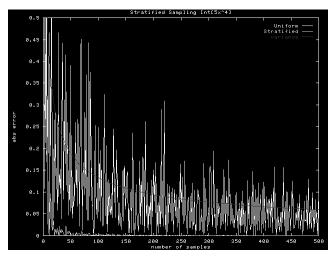
Stratified Sampling

- Samples could be arbitrarily close
- Split integral in subparts

$$I = \int_{X_1} f(x)dx + \ldots + \int_{X_N} f(x)dx$$

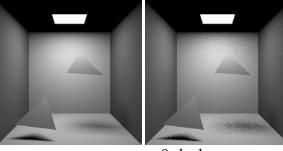
$$\bar{I}_{strat} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\bar{x}_i)}{p(\bar{x}_i)}$$

Numerical example



© Kavita Bala, Computer Science, Cornell University

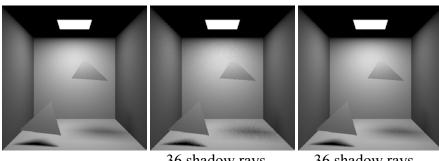
Stratified Sampling



9 shadow rays not stratified

9 shadow rays stratified

Stratified Sampling

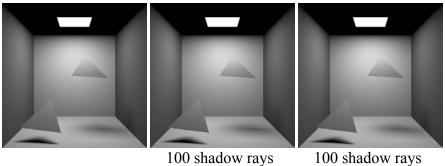


36 shadow rays not stratified

36 shadow rays stratified

© Kavita Bala, Computer Science, Cornell University

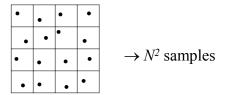
Stratified Sampling



not stratified

100 shadow rays stratified

2 Dimensions



- Problem for higher dimensions
- Sample points can still be arbitrarily close to each other

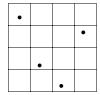
© Kavita Bala, Computer Science, Cornell University

Higher Dimensions

• Stratified grid sampling:

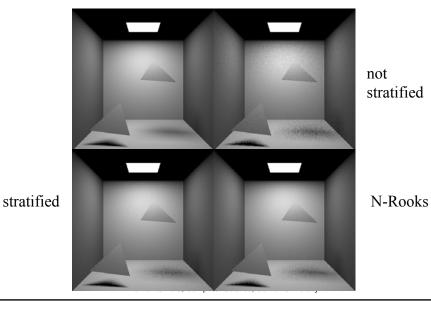
 $\rightarrow N^d$ samples

N-rooks sampling:

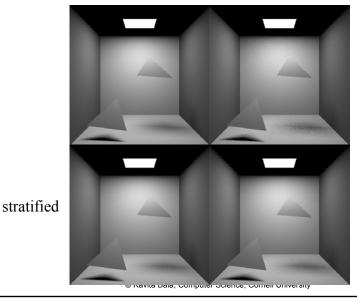


 \rightarrow N samples

N-Rooks Sampling - 9 rays



N-Rooks Sampling - 36 rays



not stratified

N-Rooks

Other types of Sampling

• How does it relate to regular sampling

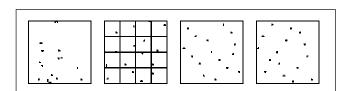
Random sampling

Regular sampling

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

- Eliminates randomness to find welldistributed samples
- Samples are determinisitic but "appear" random

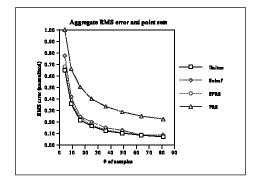


Quasi-Monte Carlo (QMC)

- Notions of variance, expected value don't apply
- Introduce the notion of discrepancy
 - Discrepancy mimics variance
 - E.g., subset of unit interval [0,x]
 - Of N samples, n are in subset
 - Discrepancy: |x-n/N|
 - Mainly: "it looks random"

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo



Example: Hammersley

- Radical inverse $\phi_p(i)$ for primes p
- Reflect digits (base p) about decimal point
 - $\Box \phi_2(i)$: 111010₂ \rightarrow 0.010111
- For N samples, a Hammersley point
 (i/N, φ₂(i))
- For more dimensions:

$$-X_i = (i/N, \phi_2(i), \phi_3(i), \phi_5(i), \phi_7(i), \phi_{11}(i), \ldots)$$

© Kavita Bala, Computer Science, Cornell University

Halton

- · Radical inverse function
 - Inverts bits around decimal point

$$i = \sum_{j} a_{j}(i)b^{j}$$

$$\Phi_{b}(i) = \sum_{i} a_{j}(i)b^{-j-1}$$

- Sample: $x_i = (\Phi_{b_1}(i), \Phi_{b_2}(i), \Phi_{b_3}(i),...)$
 - Where b₁, b₂, b₃ are primes

Quasi Monte Carlo

- Converges as fast as stratified sampling
 - Does not require knowledge about how many samples will be used
- Using QMC, directions evenly spaced no matter how many samples are used
- Samples properly stratified-> better than pure MC

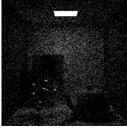
© Kavita Bala, Computer Science, Cornell University

Performance/Error

- Want better quality with smaller number of samples
 - Fewer samples/better performance
 - Stratified sampling
 - Quasi Monte Carlo: well-distributed samples
- Faster convergence
 - Importance sampling: next-event estimation

Path Tracing

Sample hemisphere



1 sample/pixel

16 samples/pixel

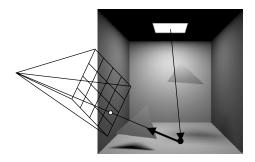
256 samples/pixel

 Importance Sampling: compute direct illumination separately!

© Kavita Bala, Computer Science, Cornell University

Direct Illumination

 Paths of length 1 only, between receiver and light source



Direct Illumination

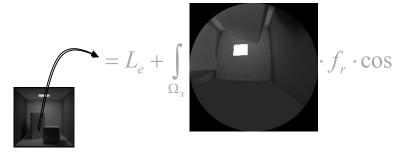
Global Illumination

© Kavita Bala, Computer Science, Cornell University

Next Event Estimation

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

Radiance from light sources + radiance from other surfaces



Next Event Estimation

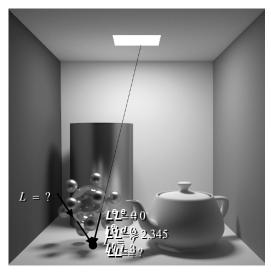
$$L(x \to \Theta) = L_e + L_{direct} + L_{indirect}$$

$$=L_e + \int_{\Omega_x} \mathbf{\Box} \cdot f_r \cdot \cos + \int_{\Omega_x} \mathbf{\Box}$$

 So ... sample direct and indirect with separate MC integration

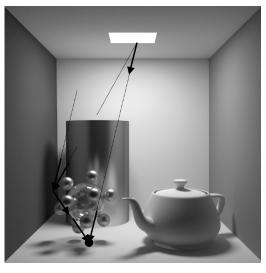
© Kavita Bala, Computer Science, Cornell University

Algorithm



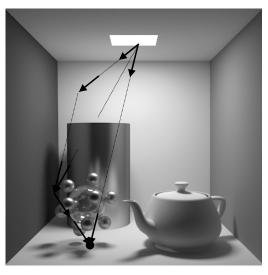
© Kavita Bala, Computer Science, Cornell University

Algorithm



© Kavita Bala, Computer Science, Cornell University

Algorithm



© Kavita Bala, Computer Science, Cornell University

→a variant of path tracing

Comparison

Without N.E.E.

With N.E.E.

16 samples/pixel

© Kavita Bala, Computer Science, Cornell University

Rays per pixel

1 sample/ pixel

4 samples/ pixel

16 samples/ pixel

© Kavita Bala, Computer Science, Cornell University

256 samples/ pixel

How to sample direct illumination

- · Sampling a single light source
- · Sampling for many lights

© Kavita Bala, Computer Science, Cornell University

Direct Illumination

$$\begin{split} L(x \rightarrow \Theta) &= \int\limits_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L(y \rightarrow \Psi) \cdot G(x,y) \cdot dA_y \\ G(x,y) &= \frac{\cos(n_x, \Theta) \cos(n_y, \Psi) Vis(x,y)}{r_{xv}^2} \end{split}$$

hemisphere integration

area integration

Two forms of the RE

Hemisphere integration

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

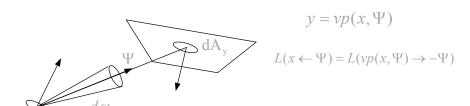
Area integration (over polygons from set A)

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_A f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) \cdot \frac{\cos \theta_x \cdot \cos \theta_y}{r_{xy}^2} \cdot V(x, y) \cdot dA_y$$

© Kavita Bala, Computer Science, Cornell University

Rendering Equation

$$L_{direct}(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$



$$d\omega_{\Psi} = \frac{dA_y \cos \theta_y}{r_{xy}^2}$$

Rendering Equation: visible surfaces

$$L_{direct}(x \to \Theta) = \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \theta_x \cdot d\omega_{\Psi}$$

Coordinate transform \(\)

$$L_{direct}(x \to \Theta) = \int_{\substack{y \text{ on} \\ \text{all lights}}} f_r(\Psi \leftrightarrow \Theta) \cdot L(y \to -\Psi) V(x, y) \cos \theta_x \cdot \frac{\cos \theta_y}{r_{xy}^2} \cdot dA_y$$

Integration domain = surface points y on lights

© Kavita Bala, Computer Science, Cornell University

RE over light sources

$$\begin{split} L(x \to \Theta) &= \int\limits_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y \\ G(x, y) &= \frac{\cos \theta_x \cos \theta_y Vis(x, y)}{r_{xy}^2} \end{split}$$

area integration

Estimator for direct lighting

- Pick a point on the light's surface with pdf
 p(y)
- For N samples, direct light at point x is:

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{r_{x\bar{y}_i}^2} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)}{p(\bar{y}_i)}$$

© Kavita Bala, Computer Science, Cornell University

Generating direct paths

- Pick surface points y_i on light source
- Evaluate direct illumination integral

$$\langle L(x \to \Theta) \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(...)L(...)G(x, y_i)}{p(y_i)}$$

PDF for sampling light

Uniform

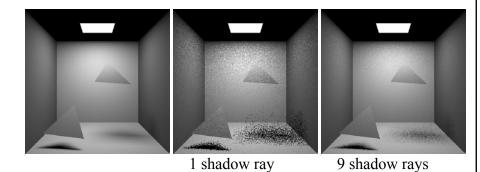
$$p(y) = \frac{1}{Area_{source}}$$

- · Pick a point uniformly over light's area
 - Can stratify samples
- · Estimator:

$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)$$

© Kavita Bala, Computer Science, Cornell University

More points ...



$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)$$

Even more points ...

36 shadow rays

100 shadow rays

$$E(x) = \frac{Area_{source}}{N} \sum_{i=1}^{N} f_r L_{source} \frac{\cos \theta_x \cos \theta_{\bar{y}_i}}{r_{x\bar{y}_i}^2} Vis(x, \bar{y}_i)$$

© Kavita Bala, Computer Science, Cornell University

Different pdfs

Uniform

$$p(y) = \frac{1}{Area_{source}}$$

- Solid angle sampling
 - Removes cosine and distance from integrand
 - Better when significant foreshortening

$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source}}{\frac{cos \theta_x cos \theta_{\overline{y}_i}}{r_{x\overline{y}_i}^2} Vis(x, \overline{y}_i)}{p(\overline{y}_i)}$$

Parameters

- How to distribute paths within light source?
 - Uniform
 - Solid angle
 - What about light distribution?
- How many paths ("shadow-rays")?
 - Total?
 - Per light source? (~intensity, importance, …)

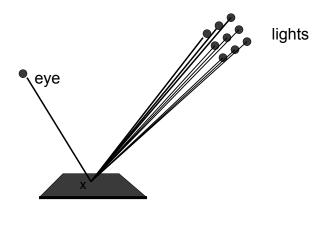
© Kavita Bala, Computer Science, Cornell University

Scenes with many lights

- Many lights in scenes: M lights
- · How to handle many lights?
- Formulation 1: M integrals, one per light
 - Same solution technique as earlier for each light

$$L(x \to \Theta) = \sum_{i=1}^{M} \int_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

Lighting: point sources



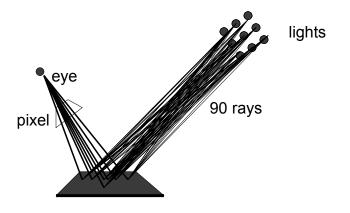
© Kavita Bala, Computer Science, Cornell University

Scenes with many lights

- · Various choices:
 - Shadow rays per light source
 - Distribution of shadow rays within a light source
- Total # rays = M N
 - Where, M = #lights, N = #rays per source

Antialiasing: pixel

Anti-aliasing: k M N



© Kavita Bala, Computer Science, Cornell University

Formulation over all lights

- · When M is large, each direct lighting sample is very expensive
- We would like to importance sample the lights

• Instead of M integrals
$$L(x \to \Theta) = \sum_{i=1}^{\infty} \int\limits_{A_{source}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

• Formulation over 1 integration domain

$$L(x \to \Theta) = \int_{A_{all \ lights}} f_r(x, -\Psi \leftrightarrow \Theta) \cdot L_{source}(y \to -\Psi) \cdot G(x, y) \cdot dA_y$$

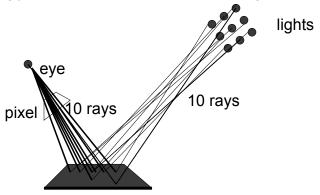
Why?

- Do not need a minimum of M rays/sample
- · Can use only one ray/sample
- Still need N samples, but 1 ray/sample
- Ray is distributed over the whole integration domain
 - Can importance sample the lights

© Kavita Bala, Computer Science, Cornell University

Anti-aliasing

Can piggy-back on the anti-aliasing of pixel



How to sample the lights?

- A discrete pdf p_i (k_i) picks the light k_i
- A surface point is then picked with pdf $p(y_i|k_i)$

• Estimator with N samples:
$$E(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{f_r L_{source} G(x, \overline{y}_i)}{p_L(k_i) p(y_i \mid k_i)}$$

© Kavita Bala, Computer Science, Cornell University

Strategies for picking light

- Uniform
$$p_L(k) = \frac{1}{M}$$

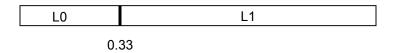
- Area
$$p_L(k) = \frac{A_k}{\sum A_k}$$

- Power
$$p_L(k) = \frac{P_k}{\sum P_k}$$

Example for 2 lights

- Light 0 has power 1, Light 1 has power 2
- Using power for pdf:

$$-p_L(L_0) = 1/3, p_L(L_1) = 2/3$$



• Overall pdf $p(y) = \frac{1}{3} p_{L_0}(y) + \frac{2}{3} p_{L_1}(y)$

© Kavita Bala, Computer Science, Cornell University

Example for 2 lights

- Pick a random value: ξ_0
- If $\xi_0 < \frac{1}{3}$
- Sample Light 0 and compute estimate e0
- Overall estimate is $\frac{\frac{c_0}{1}}{3}$

Example for 2 lights

If

$$\frac{1}{3} \le \xi_0 < 1$$

- Sample Light 1 and compute estimate e1
- Overall estimate is $\frac{e_1}{2}$

© Kavita Bala, Computer Science, Cornell University

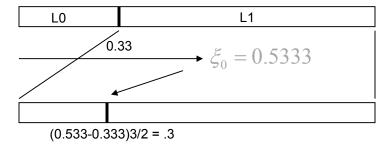
How to sample light?

- Once light is picked, can pick two random numbers ξ_1, ξ_2 according to $p_{L0}(y)$, $p_{L1}(y)$
- To decrease variance we should reuse ξ_0
- But, already used information in ξ_0 to pick the light

Example for 2 lights

• Rescale ξ_0

$$\xi'_0 = \frac{3}{2}(\xi_0 - \frac{1}{3})$$



• Use (ξ'_0, ξ_1) to pick samples on light 1