Lecture 8: Monte Carlo

Rendering
Chapters 4 and 5 in Advanced Gl

Fall 2004

Kavita Bala
Computer Science

Cornell University

Homework

« HW 1out, due Oct 5

« Assignments done separately
— Might revisit this policy for later assignments

© Kavita Bala, Computer Science, Cornell University

Rendering Equation

function to integrate over all
incoming directions over the
hemisphere around x

Value we want

© Kavita Bala, Computer Science, Cornell University

How to compute?

L(x—>0) = ?

Check for L (x—0)

Now add L, (x—0) =

© Kavita Bala, Computer Science, Cornell University

How to compute?

* Monte Carlo!

» Generate random directions on
hemisphere Q,, using pdf p(¥)

© Kavita Bala, Computer Science, Cornell University

How to compute?

+ evaluate L(x«¥))?

« Radiance is invariant along
straight paths

* vp(x, ¥,) = first visible point

* L(x«¥)) = L(vp(x, ;) = ¥))

© Kavita Bala, Computer Science, Cornell University

How to compute? Recursion ...

Recursion

Each additional bounce
adds one more level of
indirect light

Handles ALL light transport -

“Stochastic Ray Tracing”

© Kavita Bala, Computer Science, Cornell University

Russian Roulette

Integral

Estimator

Variance

© Kavita Bala, Computer Science, Cornell University

Russian Roulette

 Pick some ‘absorption probability’ o
— probability 1-a that ray will bounce
— estimated radiance becomes L/ (1-a)

« Eg.a=0.9
—only 1 chance in 10 that ray is reflected
— estimated radiance of that ray is multiplied by 10

— instead of shooting 10 rays, we shoot only 1, but
count the contribution of this one 10 times

© Kavita Bala, Computer Science, Cornell University

Algorithm so far ...

» Shoot viewing ray through each pixel

» Shoot # indirect rays, sampled over
hemisphere

« Terminate recursion using Russian
Roulette

© Kavita Bala, Computer Science, Cornell University

Pixel Anti-Aliasing

« Compute radiance only at
center of pixel: jaggies

« Simple box filter:

* ... evaluate using MC

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing

« Parameters?
— # starting rays per pixel
— # random rays for each surface point
(branching factor)

« Path Tracing
— Branching factor ==

© Kavita Bala, Computer Science, Cornell University

Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

 Pixel sampling + light source sampling
folded into one method

© Kavita Bala, Computer Science, Cornell University

Comparison

1 centered viewing ray 100 random viewing rays
100 random shadow rays per 1 random shadow ray per
viewing ray viewing ray

© Kavita Bala, Computer Science, Cornell University

Algorithm so far ...

» Shoot # viewing rays through each pixel

» Shoot # indirect rays, sampled over
hemisphere

— Path tracing shoots only 1 indirect ray

« Terminate recursion using Russian
Roulette

© Kavita Bala, Computer Science, Cornell University

Algorithm

S =1.234

© Kavita Bala, Computer Science, Cornell University

Performance/Error

Want better quality with smaller number of
samples

— Fewer samples/better performance

— Stratified sampling

— Quasi Monte Carlo: well-distributed samples

» Faster convergence
— Importance sampling: next-event estimation

© Kavita Bala, Computer Science, Cornell University

Stratified Sampling

Samples could be arbitrarily close

Split integral in subparts

Estimator

Variance:

© Kavita Bala, Computer Science, Cornell University

Numerical example

\‘l (i JM JH' \ \MlﬂmiJl .IW Il

|| I
-

9 shadow rays 9 shadow rays
not stratified stratified

Stratified Sampling

36 shadow rays 36 shadow ray
not stratified stratified

© Kavita Bala, Computer Science, Cornell University

Stratified Sampling

100 shadow rays
not stratified stratified

© Kavita Bala, Computer Science, Cornell University

2 Dimensions

— N? samples

» Problem for higher dimensions

« Sample points can still be arbitrarily close
to each other

© Kavita Bala, Computer Science, Cornell University

Higher Dimensions

« Stratified grid sampling:

— N9 samples

* N-rooks sampling:

— N samples

© Kavita Bala, Computer Science, Cornell University

N-Rooks Sampling - 9 rays

not
stratified

stratified N-Rooks

N-Rooks Sampling - 36 rays

not
stratified

stratified N-Rooks

Other types of Sampling

» How does it relate to regular sampling

Random sampling Regular sampling

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

* Eliminates randomness to find well-
distributed samples

« Samples are determinisitic but “appear’
random

J

© Kavita Bala, Computer Science, Cornell University

Quasi-Monte Carlo (QMC)

» Notions of variance, expected value don’t
apply

* Introduce the notion of discrepancy
— Discrepancy mimics variance

— E.g., subset of unit interval [0,X]
= Of N samples, n are in subset
» Discrepancy: |x-n/N|

— Mainly: “it looks random”

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

Aggregare RMS errar and poin sets
1.00

0.90
080 i

ERSanT:Y —O— Thiee
EETTERTA
Eusnq |
5 :
5 .40+ 3

N
s--Oeee SPRS

P [—
Z a0 &y PRS
=

8.10 o

a.00

T T T T T T T 1T
010 20 3 <0 S0 &0 70 R0 90
of ramplca

© Kavita Bala, Computer Science, Cornell University

Example: Hammersley

Radical inverse ¢,(i) for primes p
Reflect digits (base p) about decimal point
1 ¢y(i): 111010, — 0.010111

For N samples, a Hammersley point
— (i/N, (7))

For more dimensions:
- XI =(I/N’ (I)Z(I)’ (I)S(I)’ (I)S(I)’ (I)?(I)’ ¢11(|)’)

© Kavita Bala, Computer Science, Cornell University

Halton

» Radical inverse function
— Inverts bits around decimal point

« Sample:
— Where b,, b,, b; are primes

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

» Converges as fast as stratified sampling

— Does not require knowledge about how many
samples will be used

» Using QMC, directions evenly spaced no
matter how many samples are used

« Samples properly stratified-> better than
pure MC

© Kavita Bala, Computer Science, Cornell University

Performance/Error

« Want better quality with smaller number of
samples
— Fewer samples/better performance
— Stratified sampling
— Quasi Monte Carlo: well-distributed samples

» Faster convergence
— Importance sampling: next-event estimation

© Kavita Bala, Computer Science, Cornell University

Path Tracing

Sample hemisphere

1 sample/pixel 16 samples/pixel 256 samples/pixel

» Importance Sampling: compute direct
illumination separately!

© Kavita Bala, Computer Science, Cornell University

Direct lllumination

» Paths of length 1 only, between receiver
and light source

© Kavita Bala, Computer Science, Cornell University

Direct Illumination Global Illumination

© Kavita Bala, Computer Science, Cornell University

Next Event Estimation

Z

Radiance from light sources + radiance from other surfaces

© Kavita Bala, Computer Science, Cornell University

Next Event Estimation

» So ... sample direct and indirect with
separate MC integration

© Kavita Bala, Computer Science, Cornell University

Algorithm

© Kavita Bala, Computer Science, Cornell University

Algorithm

© Kavita Bala, Computer Science, Cornell University

Algorithm

—a variant of
path tracing

© Kavita Bala, Computer Science, Cornell University

Comparison

Without N.E.E. With N.E.E.

16 samples/pixel

© Kavita Bala, Computer Science, Cornell University

Rays per pixel

! sgmple/ 4 samples/
pixel pixel

16 samples/ 256 sgmples/
pixel pixel

© Kavita Bala, Computer Science, Cornell University

How to sample direct illumination

« Sampling a single light source

« Sampling for many lights

© Kavita Bala, Computer Science, Cornell University

Direct lllumination

hemisphere integration area integration

© Kavita Bala, Computer Science, Cornell University

Two forms of the RE

* Hemisphere integration

 Area integration (over polygons from set A)

© Kavita Bala, Computer Science, Cornell University

Rendering Equation

© Kavita Bala, Computer Science, Cornell University

Rendering Equation: visible surfaces

Coordinate transform ¢

/

Integration domain = surface points y on lights

© Kavita Bala, Computer Science, Cornell University

RE over light sources

area integration

© Kavita Bala, Computer Science, Cornell University

Estimator for direct lighting

* Pick a point on the light’s surface with pdf

* For N samples, direct light at point x is:

© Kavita Bala, Computer Science, Cornell University

Generating direct paths

* Pick surface points y; on light source
« Evaluate direct illumination integral

© Kavita Bala, Computer Science, Cornell University

PDF for sampling light

e Uniform

 Pick a point uniformly over light’s area
— Can stratify samples

o Estimator:

© Kavita Bala, Computer Science, Cornell University

More points ...

e 170 1 i s R

1 shadow ray 9 scig;v 2y

© Kavita Bala, Computer Science, Cornell University

Even more points ...

36 th)\;v ays 100 shadow rays

© Kavita Bala, Computer Science, Cornell University

Different pdfs

* Uniform

+ Solid angle sampling
— Removes cosine and distance from integrand
— Better when significant foreshortening

© Kavita Bala, Computer Science, Cornell University

Parameters

* How to distribute paths within light source?
— Uniform
— Solid angle
— What about light distribution?

* How many paths (“shadow-rays™)?
— Total?
— Per light source? (~intensity, importance, ...)

© Kavita Bala, Computer Science, Cornell University

Scenes with many lights

« Many lights in scenes: M lights

* How to handle many lights?

* Formulation 1: M integrals, one per light

— Same solution technique as earlier for each
light

© Kavita Bala, Computer Science, Cornell University

Lighting: point sources

lights

© Kavita Bala, Computer Science, Cornell University

Scenes with many lights

» Various choices:
— Shadow rays per light source

— Distribution of shadow rays within a light
source

 Total#rays=MN
— Where, M = #lights, N = #rays per source

© Kavita Bala, Computer Science, Cornell University

Antialiasing: pixel

« Anti-aliasing: k M N

lights

© Kavita Bala, Computer Science, Cornell University

Formulation over all lights

When M is large, each direct lighting
sample is very expensive

We would like to importance sample the
lights

Instead of M integrals

Formulation over 1 integration domain

© Kavita Bala, Computer Science, Cornell University

Why?

Do not need a minimum of M rays/sample
Can use only one ray/sample

Still need N samples, but 1 ray/sample

Ray is distributed over the whole
integration domain
— Can importance sample the lights

© Kavita Bala, Computer Science, Cornell University

Anti-aliasing

« Can piggy-back on the anti-aliasing of pixel

© Kavita Bala, Computer Science, Cornell University

How to sample the lights?

« A discrete pdf p,(k;) picks the light k;

» A surface point is then picked with pdf
pP(yilk)

» Estimator with N samples:

© Kavita Bala, Computer Science, Cornell University

Strategies for picking light

— Uniform

— Area

— Power

© Kavita Bala, Computer Science, Cornell University

Example for 2 lights

Light O has power 1, Light 1 has power 2

Using power for pdf:
—pu(Lo) = 1/3, pu(Ly) = 2/3

| Lo | L1

0.33

Overall pdf

© Kavita Bala, Computer Science, Cornell University

Example for 2 lights

Pick a random value:

Sample Light 0 and compute estimate e0

Overall estimate is

© Kavita Bala, Computer Science, Cornell University

Example for 2 lights

« Sample Light 1 and compute estimate e1

* Qverall estimate is

© Kavita Bala, Computer Science, Cornell University

How to sample light?

» Once light is picked, can pick two random
numbers according to p,,(y),

PL1(Y)

* To decrease variance we should reuse

» But, already used information in to
pick the light

© Kavita Bala, Computer Science, Cornell University

Example for 2 lights

 Rescale
LO | L1
0.33 .
| I |

(0.533-0.333)3/2=.3

* Use to pick samples on light 1

© Kavita Bala, Computer Science, Cornell University

