Lecture 8: Monte Carlo

Rendering
Chapters 4 and 5 in Advanced Gl

Fall 2004

Kavita Bala
Computer Science

Cornell University

Homework

« HW 1out, due Oct 5

« Assignments done separately
— Might revisit this policy for later assignments
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Rendering Equation

function to integrate over all
incoming directions over the
hemisphere around x

Value we want
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How to compute?

L(x—>0) = ?

Check for L (x—0)

Now add L, (x—0) =
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How to compute?

* Monte Carlo!

» Generate random directions on
hemisphere Q,, using pdf p(¥)
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How to compute?

+ evaluate L(x«¥))?

« Radiance is invariant along
straight paths

* vp(x, ¥,) = first visible point

* L(x«¥)) = L(vp(x, ;) = ¥))
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How to compute? Recursion ...

Recursion ....

Each additional bounce
adds one more level of
indirect light

Handles ALL light transport -

“Stochastic Ray Tracing”
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Russian Roulette

Integral

Estimator

Variance
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Russian Roulette

 Pick some ‘absorption probability’ o
— probability 1-a that ray will bounce
— estimated radiance becomes L/ (1-a)

« Eg.a=0.9
—only 1 chance in 10 that ray is reflected
— estimated radiance of that ray is multiplied by 10

— instead of shooting 10 rays, we shoot only 1, but
count the contribution of this one 10 times
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Algorithm so far ...

» Shoot viewing ray through each pixel

» Shoot # indirect rays, sampled over
hemisphere

« Terminate recursion using Russian
Roulette
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Pixel Anti-Aliasing

« Compute radiance only at
center of pixel: jaggies

« Simple box filter:

* ... evaluate using MC
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Stochastic Ray Tracing

« Parameters?
— # starting rays per pixel
— # random rays for each surface point
(branching factor)

« Path Tracing
— Branching factor ==
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Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

 Pixel sampling + light source sampling
folded into one method
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Comparison

1 centered viewing ray 100 random viewing rays
100 random shadow rays per 1 random shadow ray per
viewing ray viewing ray
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Algorithm so far ...

» Shoot # viewing rays through each pixel

» Shoot # indirect rays, sampled over
hemisphere

— Path tracing shoots only 1 indirect ray

« Terminate recursion using Russian
Roulette
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Algorithm

S =1.234
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Performance/Error

Want better quality with smaller number of
samples

— Fewer samples/better performance

— Stratified sampling

— Quasi Monte Carlo: well-distributed samples

» Faster convergence
— Importance sampling: next-event estimation
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Stratified Sampling

Samples could be arbitrarily close

Split integral in subparts

Estimator

Variance:
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Numerical example
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9 shadow rays 9 shadow rays
not stratified stratified




Stratified Sampling

36 shadow rays 36 shadow ray
not stratified stratified
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Stratified Sampling

100 shadow rays
not stratified stratified

© Kavita Bala, Computer Science, Cornell University




2 Dimensions

— N? samples

» Problem for higher dimensions

« Sample points can still be arbitrarily close
to each other
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Higher Dimensions

« Stratified grid sampling:

— N9 samples

* N-rooks sampling:

— N samples
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N-Rooks Sampling - 9 rays

not
stratified

stratified N-Rooks

N-Rooks Sampling - 36 rays

not
stratified

stratified N-Rooks




Other types of Sampling

» How does it relate to regular sampling

Random sampling Regular sampling
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Quasi Monte Carlo

* Eliminates randomness to find well-
distributed samples

« Samples are determinisitic but “appear’
random

J
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Quasi-Monte Carlo (QMC)

» Notions of variance, expected value don’t
apply

* Introduce the notion of discrepancy
— Discrepancy mimics variance

— E.g., subset of unit interval [0,X]
= Of N samples, n are in subset
» Discrepancy: |x-n/N|

— Mainly: “it looks random”
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Quasi Monte Carlo
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Example: Hammersley

Radical inverse ¢,(i) for primes p
Reflect digits (base p) about decimal point
1 ¢y(i): 111010, — 0.010111

For N samples, a Hammersley point
— (i/N, (7))

For more dimensions:
- XI =(I/N’ (I)Z(I)’ (I)S(I)’ (I)S(I)’ (I)?(I)’ ¢11(|)’ )
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Halton

» Radical inverse function
— Inverts bits around decimal point

« Sample:
— Where b,, b,, b; are primes
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Quasi Monte Carlo

» Converges as fast as stratified sampling

— Does not require knowledge about how many
samples will be used

» Using QMC, directions evenly spaced no
matter how many samples are used

« Samples properly stratified-> better than
pure MC
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Performance/Error

« Want better quality with smaller number of
samples
— Fewer samples/better performance
— Stratified sampling
— Quasi Monte Carlo: well-distributed samples

» Faster convergence
— Importance sampling: next-event estimation
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Path Tracing

Sample hemisphere

1 sample/pixel 16 samples/pixel 256 samples/pixel

» Importance Sampling: compute direct
illumination separately!
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Direct lllumination

» Paths of length 1 only, between receiver
and light source
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Direct Illumination Global Illumination
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Next Event Estimation

Z

Radiance from light sources + radiance from other surfaces
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Next Event Estimation

» So ... sample direct and indirect with
separate MC integration

© Kavita Bala, Computer Science, Cornell University

Algorithm
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Algorithm
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Algorithm

—a variant of
path tracing
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Comparison

Without N.E.E. With N.E.E.

16 samples/pixel
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Rays per pixel

! sgmple/ 4 samples/
pixel pixel

16 samples/ 256 sgmples/
pixel pixel
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How to sample direct illumination

« Sampling a single light source

« Sampling for many lights
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Direct lllumination

hemisphere integration area integration
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Two forms of the RE

* Hemisphere integration

 Area integration (over polygons from set A)
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Rendering Equation
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Rendering Equation: visible surfaces

Coordinate transform ¢

/

Integration domain = surface points y on lights
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RE over light sources

area integration
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Estimator for direct lighting

* Pick a point on the light’s surface with pdf

* For N samples, direct light at point x is:
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Generating direct paths

* Pick surface points y; on light source
« Evaluate direct illumination integral

© Kavita Bala, Computer Science, Cornell University




PDF for sampling light

e Uniform

 Pick a point uniformly over light’s area
— Can stratify samples

o Estimator:

© Kavita Bala, Computer Science, Cornell University

More points ...

e 170 1 i s R

1 shadow ray 9 scig;v 2y
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Even more points ...

36 th)\;v ays 100 shadow rays
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Different pdfs

* Uniform

+ Solid angle sampling
— Removes cosine and distance from integrand
— Better when significant foreshortening
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Parameters

* How to distribute paths within light source?
— Uniform
— Solid angle
— What about light distribution?

* How many paths (“shadow-rays™)?
— Total?
— Per light source? (~intensity, importance, ...)
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Scenes with many lights

« Many lights in scenes: M lights

* How to handle many lights?

* Formulation 1: M integrals, one per light

— Same solution technique as earlier for each
light
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Lighting: point sources

lights
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Scenes with many lights

» Various choices:
— Shadow rays per light source

— Distribution of shadow rays within a light
source

 Total#rays=MN
— Where, M = #lights, N = #rays per source
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Antialiasing: pixel

« Anti-aliasing: k M N

lights
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Formulation over all lights

When M is large, each direct lighting
sample is very expensive

We would like to importance sample the
lights

Instead of M integrals

Formulation over 1 integration domain
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Why?

Do not need a minimum of M rays/sample
Can use only one ray/sample

Still need N samples, but 1 ray/sample

Ray is distributed over the whole
integration domain
— Can importance sample the lights
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Anti-aliasing

« Can piggy-back on the anti-aliasing of pixel
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How to sample the lights?

« A discrete pdf p,(k;) picks the light k;

» A surface point is then picked with pdf
pP(yilk)

» Estimator with N samples:
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Strategies for picking light

— Uniform

— Area

— Power
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Example for 2 lights

Light O has power 1, Light 1 has power 2

Using power for pdf:
—pu(Lo) = 1/3, pu(Ly) = 2/3

| Lo | L1

0.33

Overall pdf
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Example for 2 lights

Pick a random value:

Sample Light 0 and compute estimate e0

Overall estimate is
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Example for 2 lights

« Sample Light 1 and compute estimate e1

* Qverall estimate is
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How to sample light?

» Once light is picked, can pick two random
numbers according to p,,(y),

PL1(Y)

* To decrease variance we should reuse

» But, already used information in to
pick the light
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Example for 2 lights

 Rescale
LO | L1
0.33 .
| I |

(0.533-0.333)3/2=.3

* Use to pick samples on light 1
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