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Lecture 8: Monte Carlo 
Rendering

Chapters 4 and 5 in Advanced GI

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Homework
• HW 1out, due Oct 5

• Assignments done separately
– Might revisit this policy for later assignments
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Rendering Equation

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x
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re fL cos

function to integrate over all
incoming directions over the
hemisphere around x

Value we want
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How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
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x

dnxLf xr ω),cos()()(
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How to compute?
• Monte Carlo!

• Generate random directions on 
hemisphere Ωx, using pdf p(Ψ)
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How to compute?

• evaluate L(x←Ψi)?

• Radiance is invariant along 
straight paths

• vp(x, Ψi) = first visible point

• L(x←Ψi) = L(vp(x, Ψi) → Ψi)
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How to compute? Recursion ...

• Recursion ….

• Each additional bounce 
adds one more level of 
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”
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Russian Roulette

• Pick some ‘absorption probability’ α
– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10
– instead of shooting 10 rays, we shoot only 1, but 

count the contribution of this one 10 times
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Algorithm so far ...
• Shoot viewing ray through each pixel

• Shoot # indirect rays, sampled over 
hemisphere

• Terminate recursion using Russian 
Roulette
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Pixel Anti-Aliasing

• Compute radiance only at 
center of pixel: jaggies

• Simple box filter:

• … evaluate using MC

∫=
Pixel

dxxLL )(
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Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point 

(branching factor)

• Path Tracing
– Branching factor == 1
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Path tracing

1 ray / pixel 10 rays / pixel 100 rays / pixel

• Pixel sampling + light source sampling 
folded into one method
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Comparison

1 centered viewing ray
100 random shadow rays per

viewing ray

100 random viewing rays
1 random shadow ray per

viewing ray
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Algorithm so far ...
• Shoot # viewing rays through each pixel

• Shoot # indirect rays, sampled over 
hemisphere
– Path tracing shoots only 1 indirect ray

• Terminate recursion using Russian 
Roulette
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Algorithm

?=L ?=L ?
0

=
=

r

e

L
L

?
0

=
=

r

e

L
L ?=inL ?=inL ?=inL ?=inL

?
0

=
=

r

e

L
L

?
0

=
=

r

e

L
L

?=L ?=L
?=inL ?=inL

?=L ?=L

?
234.1

=
=

r

e

L
L

?
234.1

=
=

r

e

L
L



9

© Kavita Bala, Computer Science, Cornell University

Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Stratified Sampling

• Samples could be arbitrarily close

• Split integral in subparts

• Estimator

• Variance:
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Numerical example
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Stratified Sampling 

9 shadow rays
not stratified

9 shadow rays
stratified



11

© Kavita Bala, Computer Science, Cornell University

Stratified Sampling 

36 shadow rays
not stratified

36 shadow rays
stratified
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Stratified Sampling 

100 shadow rays
not stratified

100 shadow rays
stratified
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•
• • •

• • •
•

• • • •

• • • •

→ N2 samples

2 Dimensions

• Problem for higher dimensions

• Sample points can still be arbitrarily close 
to each other
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Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•

•

•
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N-Rooks Sampling - 9 rays 

not
stratified

stratified N-Rooks
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N-Rooks Sampling - 36 rays 

not
stratified

stratified N-Rooks
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• How does it relate to regular sampling

Other types of Sampling

Random sampling Regular sampling
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Quasi Monte Carlo
• Eliminates randomness to find well-

distributed samples
• Samples are determinisitic but “appear” 

random
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Quasi-Monte Carlo (QMC)
• Notions of variance, expected value don’t 

apply

• Introduce the notion of discrepancy
– Discrepancy mimics variance
– E.g., subset of unit interval [0,x]

Of N samples, n are in subset
Discrepancy: |x-n/N|

– Mainly: “it looks random”
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Quasi Monte Carlo
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Example: Hammersley
• Radical inverse φp(i) for primes p
• Reflect digits (base p) about decimal point

� φ2(i): 1110102 → 0.010111

• For N samples, a Hammersley point 
– (i/N, φ2(i))

• For more dimensions:
– Xi =(i/N, φ2(i), φ3(i), φ5(i), φ7(i), φ11(i), ….)
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Halton
• Radical inverse function

– Inverts bits around decimal point

• Sample: 
– Where b1, b2, b3 are primes
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Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many 

samples will be used

• Using QMC, directions evenly spaced no 
matter how many samples are used

• Samples properly stratified-> better than 
pure MC
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Performance/Error

• Want better quality with smaller number of 
samples 
– Fewer samples/better performance
– Stratified sampling
– Quasi Monte Carlo: well-distributed samples

• Faster convergence
– Importance sampling: next-event estimation
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Path Tracing

1 sample/pixel 16 samples/pixel 256 samples/pixel

Sample hemisphere

• Importance Sampling: compute direct 
illumination separately!
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Direct Illumination
• Paths of length 1 only, between receiver 

and light source
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Direct Illumination Global Illumination
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Next Event Estimation

Radiance from light sources + radiance from other surfaces

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
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Next Event Estimation

indirectdirecte LLLxL ++=Θ→ )(
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• So … sample direct and indirect with 
separate MC integration
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Algorithm
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Algorithm

© Kavita Bala, Computer Science, Cornell University

Algorithm

→a variant of 
path tracing
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Comparison

Without N.E.E. With N.E.E.

16 samples/pixel

© Kavita Bala, Computer Science, Cornell University

Rays per pixel

1 sample/
pixel

4 samples/
pixel

16 samples/
pixel

256 samples/
pixel
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How to sample direct illumination
• Sampling a single light source 

• Sampling for many lights
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Direct Illumination
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Two forms of the RE
• Hemisphere integration

• Area integration (over polygons from set A)

∫ ⋅⋅
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Rendering Equation
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Rendering Equation: visible surfaces

∫
Ω

Ψ⋅⋅Ψ←⋅Θ↔Ψ=Θ→
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RE over light sources 
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Estimator for direct lighting
• Pick a point on the light’s surface with pdf

• For N samples, direct light at point x is:

∑
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Generating direct paths
• Pick surface points yi on light source
• Evaluate direct illumination integral
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PDF for sampling light
• Uniform

• Pick a point uniformly over light’s area
– Can stratify samples

• Estimator:
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More points ...

1 shadow ray 9 shadow rays
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Even more points ...

36 shadow rays 100 shadow rays

∑
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Different pdfs
• Uniform

• Solid angle sampling
– Removes cosine and distance from integrand
– Better when significant foreshortening
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Parameters
• How to distribute paths within light source?

– Uniform
– Solid angle
– What about light distribution?

• How many paths (“shadow-rays”)?
– Total?
– Per light source? (~intensity, importance, …)

© Kavita Bala, Computer Science, Cornell University

Scenes with many lights
• Many lights in scenes: M lights

• How to handle many lights?

• Formulation 1:  M integrals, one per  light
– Same solution technique as earlier for each 

light

∫∑ ⋅⋅Ψ−→⋅Θ↔Ψ−=Θ→
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1



30

© Kavita Bala, Computer Science, Cornell University

Lighting: point sources

lights

eye

x
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Scenes with many lights
• Various choices:

– Shadow rays per light source
– Distribution of shadow rays within a light 

source

• Total # rays = M N
– Where, M = #lights, N = #rays per source 
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Antialiasing: pixel

lights

eye

pixel
90 rays

• Anti-aliasing: k M N 
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Formulation over all lights
• When M is large, each direct lighting 

sample is very expensive

• We would like to importance sample the 
lights

• Instead of M integrals

• Formulation over 1 integration domain
∫ ⋅⋅Ψ−→⋅Θ↔Ψ−=Θ→
lightsallA
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Why?
• Do not need a minimum of M rays/sample
• Can use only one ray/sample

• Still need N samples, but 1 ray/sample

• Ray is distributed over the whole 
integration domain
– Can importance sample the lights
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Anti-aliasing

lights

eye

pixel 10 rays 10 rays

• Can piggy-back on the anti-aliasing of pixel
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How to sample the lights?
• A discrete pdf pL(ki) picks the light ki

• A surface point is then picked with pdf
p(yi|ki)

• Estimator with N samples:
∑
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Strategies for picking light

– Uniform

– Area

– Power
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Example for 2 lights
• Light 0 has power 1, Light 1 has power 2

• Using power for pdf: 
– pL(L0) = 1/3, pL(L1) = 2/3

• Overall pdf )(
3
2)(

3
1)(

10
ypypyp LL +=

0.33

L0 L1

© Kavita Bala, Computer Science, Cornell University

Example for 2 lights
• Pick a random value: 

• If

• Sample Light 0 and compute estimate e0

• Overall estimate is 

3
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0 <ξ

3
1
0e

0ξ
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Example for 2 lights
• If

• Sample Light 1 and compute estimate e1

• Overall estimate is 

1
3
1

0 <≤ ξ

3
2
1e
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How to sample light?
• Once light is picked, can pick two random 

numbers according to  pL0(y), 
pL1(y)

• To decrease variance we should reuse

• But, already used information in        to 
pick the light

0ξ

0ξ

21,ξξ
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Example for 2 lights
• Rescale

• Use                   to pick samples on light 1
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