Lecture 7: Monte Carlo Rendering
 Chapters 3 and 4 in Advanced Gl

Fall 2004
Kavita Bala
Computer Science
Cornell University

Why Monte Carlo?

$L(x \rightarrow \Theta)=L_{e}(x \rightarrow \Theta)+$
$\int_{\Omega_{x}} L_{e}(y \rightarrow-\Psi) f_{r}(\Psi \leftrightarrow \Theta) \cdot \cos \left(\Psi, n_{x}\right) \cdot d \omega_{\Psi}+$
\qquad

- Analytical integration is difficult
- Therefore, need numerical techniques

Monte Carlo Integration

- Numerical tool to evaluate integrals
- Use sampling
- Stochastic errors
- Unbiased
- on average, we get the right answer!

More samples

Secondary estimator

Generate N random samples x_{i}
Estimator:

Monte Carlo Integration-2D

- MC Integration works well for higher dimensions
- Unlike quadrature

MC Advantages

- Convergence rate of $\mathrm{O}\left(\frac{1}{\sqrt{N}}\right)$
- Simple
- Sampling
- Point evaluation
- Can use black boxes
- General
- Works for high dimensions
- Deals with discontinuities, crazy functions,...

Importance Sampling

- Better use of samples by taking more samples in 'important' regions, i.e. where the function is large

Importance Sampling

- Generate samples from density function $p(x)$

$$
\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- Optimal $\mathrm{p}(\mathrm{x})$? $p(x) \approx f(x) / \int f(x) d x$
- General principle:
- Closer shape of $p(x)$ is to shape of $f(x)$, lower the variance
- Variance can increase if $p(x)$ is chosen badly

MC integration - Non-Uniform

- Some parts of the integration domain have higher importance
- Generate samples according to density function $p(x)$

$$
\langle I\rangle=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

- Estimator?
- What is optimal $\mathbf{p}(\mathbf{x})$? $p(x) \approx f(x) / \int f(x) d x$

How to sample according to pdf?

- Consider discrete events x_{i}
- with probability p_{i}
- Select x_{i} if:

$$
p_{1}+\ldots p_{i-1}<\xi<p_{1}+\ldots p_{i-1}+p_{i}
$$

Non-Uniform Samples

- 1) Choose a normalized probability density function $p(x)$

Non-Uniform Samples

- 1) Choose a normalized probability density function $p(x)$
- 2) Integrate to get a cumulative probability distribution function $P(x)$:
$P(x)=\int_{0}^{x} p(t) d t$

Note this is similar to computing \qquad

Non-Uniform Samples

- 1) Choose a normalized probability density function $p(x)$
- 2) Integrate to get a probability distribution function $P(x)$:

$$
P(x)=\int_{0}^{x} p(t) d t
$$

- 3) Invert P :

Note this is similar to going from y axis to x in discrete case!

Non-Uniform Samples

- This transforms uniform samples into nonuniform samples!
- Why? $\operatorname{Pr}(x \leq y)=\operatorname{CDF}(y)=\int p(x) d x$

- Need:
- CDF P(x)
- Inverse CDP P-1

Importance Sampling

- General principle: The closer the shape of $p(x)$ is to the shape of $f(x)$, the lower the variance
- Variance can also increase if $p(x)$ is chosen badly

Numerical Example

Example: Sampling according to $p(x)$

- Area of a circle: $A=\frac{1}{\pi} \int_{0}^{2} r d r d \theta=\frac{1}{\pi}\left[\frac{r^{2}}{2} \theta\right]=1$
$A=\int_{0}^{2 \pi} \int_{0} f(r, \theta) d r d \theta$
$f(r, \theta)=\frac{r}{\pi}$
- Uniform sampling of r and θ
- Equal area sampling of r and θ

Example: Sampling according to $p(x)$

$A=\int_{0}^{2 \pi} \int_{0}^{1} f(r, \theta) d r d \theta$
$p(r, \theta)=f(r, \theta)=\frac{r}{\pi}$
$C D F(r, \theta)=P(r, \theta)=\int_{0}^{\theta} \int_{0}^{r} \frac{r}{\pi} d r d \theta=r^{2} \frac{\theta}{2 \pi}$

$y=x^{2} \rightarrow x=\sqrt{y} \Leftrightarrow P_{r}(r)=r^{2}, P_{r}^{-1}(r)=\sqrt{r}$
$x_{\theta}=P^{-1} \theta\left(\xi_{1}\right)=2 \pi \xi_{1}$
$x_{r}=P^{-1}{ }_{r}\left(\xi_{2}\right)=\sqrt{\xi_{2}}$

Cosine distribution

$$
\begin{aligned}
& f=\frac{1}{\pi} \int_{0}^{2 \pi} \int_{0}^{1} \cos \theta \sin \theta d \theta d \phi \\
& p(\theta, \phi)=\frac{\cos \theta \sin \theta}{\pi} \\
& C D F(\theta, \phi)=\int_{0}^{\theta} \int_{0}^{\phi} \frac{\cos \theta \sin \theta}{\pi} d \theta d \phi=\left(1-\cos ^{2} \theta\right) \frac{\phi}{2 \pi} \\
& F(\theta)=1-\cos ^{2} \theta \\
& F(\phi)=\frac{\phi}{2 \pi} \quad \\
& \phi_{i}=2 \pi \xi_{1} \quad \theta_{i}=\cos ^{-1} \sqrt{\xi_{2}} \\
& \text { © Kavita Bala, Computer Science, Comenl Univessity }
\end{aligned}
$$

Rejection Methods

- Pick ξ_{1}, ξ_{2}

- If $\xi_{2}<f\left(\xi_{1}\right)$, select ξ_{2}
- Is this efficient? What determines efficiency? A(f)/A(rectangle)

Summary

- What is Monte Carlo Integration?
- Estimators
- Sampling non-uniform distributions
- Importance Sampling
- Rejection Sampling
- Next time: How does MC apply to RE

Radiance Evaluation

- Many different light paths contribute to single radiance value
- many paths are unimportant
- Tools we need:
- generate the light paths
- sum all contributions of all light paths
- clever techniques to select important paths

Assumptions: black boxes

- Can query the scene geometry and materials
- light sources

- visibility checks
- tracing rays $\mathrm{V}(\mathrm{x}, \mathrm{z})=0$ or 1

Rendering Equation

Value we want

How to compute?

$\mathrm{L}(\mathrm{x} \rightarrow \Theta)=$?

Check for $L_{e}(x \rightarrow \Theta)$

Now add $L_{r}(x \rightarrow \Theta)=$

$\int_{\Omega_{r}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \left(\Psi, n_{x}\right) \cdot d \omega_{\Psi}$

How to compute?

- Monte Carlo!
- Generate random directions on hemisphere Ω_{x}, using pdf $\mathrm{p}(\Psi)$
$L(x \rightarrow \Theta)=\int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos \left(\Psi, n_{x}\right) \cdot d \omega_{\Psi}$ $\langle L(x \rightarrow \Theta)\rangle=\frac{1}{N} \sum_{i=1}^{N} \underline{f_{r}\left(\Psi_{i} \leftrightarrow \Theta\right) \cdot L\left(x \leftarrow \Psi_{i}\right) \cdot \cos \left(\Psi_{i}, n_{x}\right)}$

How to compute?

Generate random directions Ψ_{i}

- evaluate brdf
- evaluate cosine term
- evaluate $\mathrm{L}\left(\mathrm{x} \leftarrow \Psi_{\mathrm{i}}\right)$

How to compute?

- evaluate $\mathrm{L}\left(\mathrm{x} \leftarrow \Psi_{\mathrm{i}}\right)$?
- Radiance is invariant along straight paths
- $\operatorname{vp}\left(\mathrm{x}, \Psi_{\mathrm{i}}\right)=$ first visible point

- $\mathrm{L}\left(\mathrm{x} \leftarrow \Psi_{\mathrm{i}}\right)=\mathrm{L}\left(\mathrm{vp}\left(\mathrm{x}, \Psi_{\mathrm{i}}\right) \rightarrow \Psi_{\mathrm{i}}\right)$

How to compute? Recursion ...

- Recursion
- Each additional bounce adds one more level of indirect light
- Handles ALL light transport

- "Stochastic Ray Tracing"

When to end recursion?

- Contributions of further light bounces become less significant
- If we just ignore them, estimators will be biased!

Russian Roulette

Integral

Variance $\sigma_{\text {roulete }}>\sigma$

Russian Roulette

- Pick some 'absorption probability' α
- probability 1- α that ray will bounce
- estimated radiance becomes L/ (1- α)
- E.g. $\alpha=0.9$
- only 1 chance in 10 that ray is reflected
- estimated radiance of that ray is multiplied by 10
- instead of shooting 10 rays, we shoot only 1 , but count the contribution of this one 10 times

