Lecture 7: Monte Carlo Rendering Chapters 3 and 4 in Advanced GI

Fall 2004 Kavita Bala Computer Science Cornell University

Why Monte Carlo?

Analytical integration is difficult

.

• Therefore, need numerical techniques

Monte Carlo Integration

- · Numerical tool to evaluate integrals
- Use sampling
- Stochastic errors
- Unbiased
 - on average, we get the right answer!

Summary

- What is Monte Carlo Integration?
- Estimators
- Sampling non-uniform distributions
 - Importance Sampling
 - Rejection Sampling
- · Next time: How does MC apply to RE

Russian Roulette

- Pick some 'absorption probability' $\boldsymbol{\alpha}$

- probability 1- α that ray will bounce
- estimated radiance becomes L/ (1- α)
- E.g. α = 0.9
 - only 1 chance in 10 that ray is reflected
 - estimated radiance of that ray is multiplied by 10
 - instead of shooting 10 rays, we shoot only 1, but count the contribution of this one 10 times