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Why Monte Carlo?

 Analytical integration is difficult

» Therefore, need numerical techniques
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Monte Carlo Integration

Numerical tool to evaluate integrals

Use sampling

Stochastic errors

Unbiased
— on average, we get the right answer!
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More samples

Secondary estimator

Generate N random samples x;

Estimator:

Variance
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Monte Carlo Integration - 2D

* MC Integration works well for higher
dimensions

» Unlike quadrature
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MC Advantages

» Convergence rate of O( ' )

» Simple
— Sampling
— Point evaluation
— Can use black boxes

» General
— Works for high dimensions
— Deals with discontinuities, crazy functions,...
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Importance Sampling

» Better use of samples by
taking more samplesin ¢t el
‘important’ regions, i.e.
where the function is
large
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Importance Sampling

Generate samples from density function p(x)

Optimal p(x)?

General principle:

— Closer shape of p(x) is to shape of f(x), lower the
variance

Variance can increase if p(x) is chosen badly
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MC integration - Non-Uniform

Some parts of the integration domain have
higher importance

Generate samples according to density
function p(x)

Estimator?

What is optimal p(x)?
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How to sample according to pdf?

0.6

 Consider discrete events x;
— with probability p;

+ Select x;if:
P1t .. Py <E<Pst...P4 P
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Non-Uniform Samples

* 1) Choose a normalized 1
probability density function
p(x) 1
p(x)
0
0
Non-Uniform Samples
* 1) Choose a normalized 4
probability density function
p(x) |
» 2) Integrate to get a
cumulative probability ()
distribution function P(x):

Note this is similar to computing
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Non-Uniform Samples

* 1) Choose a normalized
probability density function

p(x)

+ 2) Integrate to get a |
probability y
distribution function P(x):

0

« 3) Invert P ° :

Note this is similar to going

from y axis to x in discrete case!
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Non-Uniform Samples

A

* This transforms uniform

samples into non- |

uniform samples!

AA 4

d Whyf) 0 T

* Need:
— CDF P(x)
—Inverse CDP P
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Importance Sampling

» General principle:
The closer the shape of p(x) is to the shape
of f(x), the lower the variance

» Variance can also increase if p(x) is chosen
badly

© Kavita Bala, Computer Science, Cornell University




Example: Sampling according to p(x)

* Area of a circle:

 Uniform sampling of r and 6

» Equal area sampling of rand 6
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Example: Sampling according to p(x)
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Cosine distribution
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Rejection Methods

* Pick &, &,

. If &, <f(§,), select &,

* |s this efficient? What determines
efficiency? A(f)/A(rectangle)
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Summary

What is Monte Carlo Integration?

Estimators

Sampling non-uniform distributions
— Importance Sampling
— Rejection Sampling

Next time: How does MC apply to RE
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MC applied to RE
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Radiance Evaluation

Many different light paths contribute to
single radiance value

— many paths are unimportant

Tools we need:

— generate the light paths

— sum all contributions of all light paths

— clever techniques to select important paths

© Kavita Bala, Computer Science, Cornell University

Assumptions: black boxes

Can query the scene geometry and
materials

— surface points 3

=1 L(x—>©)=?
. [©)
— light sources

— visibility checks

r'
.
-

— tracing rays % V(xz)=0or1
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Rendering Equation

function to integrate over all
incoming directions over the
hemisphere around x

Value we want
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How to compute?

L(x—>0) = ?

Check for L (x—0)

Now add L, (x—0) =
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How to compute?

* Monte Carlo!

» Generate random directions on
hemisphere Q,, using pdf p(¥)
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How to compute?

Generate random
directions ¥,

— evaluate brdf
— evaluate cosine term
— evaluate L(x<¥))
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How to compute?

evaluate L(x«<Y¥;)?

Radiance is invariant along
straight paths

vp(x, ¥;) = first visible point

L(x<-¥;) = L(vp(x, ¥;) = V)
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How to compute? Recursion ...

Recursion ....

Each additional bounce
adds one more level of
indirect light

Handles ALL light transport

“Stochastic Ray Tracing”
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When to end recursion?

|| 5|8

 Contributions of further light bounces
become less significant

* If we just ignore them, estimators will be
biased!
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Russian Roulette

Integral

Q
N

0 P 1

Estimator

Variance
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Russian Roulette

 Pick some ‘absorption probability’ o
— probability 1-a that ray will bounce
— estimated radiance becomes L/ (1-a)

« Eg.a=0.9
—only 1 chance in 10 that ray is reflected
— estimated radiance of that ray is multiplied by 10

— instead of shooting 10 rays, we shoot only 1, but
count the contribution of this one 10 times
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