
1

Lecture 7: Monte Carlo
Rendering

Chapters 3 and 4 in Advanced GI

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

• Analytical integration is difficult

• Therefore, need numerical techniques

Why Monte Carlo?

+Θ→=Θ→)()(xLxL e

+⋅Ψ⋅Θ↔ΨΨ−→∫
Ω

Ψ

x

dnfyL xre ω),cos()()(

…….

2

© Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration

• Numerical tool to evaluate integrals

• Use sampling

• Stochastic errors

• Unbiased
– on average, we get the right answer!

© Kavita Bala, Computer Science, Cornell University

More samples

Nprim /22
sec σσ =

∑
=

==
N

i
ixfN

II
1

sec)(1

Secondary estimator

Variance

Generate N random samples xi

Estimator:

0 1

)(xf

3

© Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration - 2D
• MC Integration works well for higher

dimensions
• Unlike quadrature

∫ ∫=
b

a

d

c

dxdyyxfI),(

∑
=

=
N

i ii

ii

yxp
yxf

N
I

1),(
),(1

),(yxf

© Kavita Bala, Computer Science, Cornell University

MC Advantages
• Convergence rate of O()

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1

4

© Kavita Bala, Computer Science, Cornell University

0 1

)(xf

Importance Sampling

• Better use of samples by
taking more samples in
‘important’ regions, i.e.
where the function is
large

© Kavita Bala, Computer Science, Cornell University

Importance Sampling
• Generate samples from density function p(x)

• Optimal p(x)?

• General principle:
– Closer shape of p(x) is to shape of f(x), lower the

variance
• Variance can increase if p(x) is chosen badly

∑
=

=
N

i i

i

xp
xf

N
I

1)(
)(1

∫≈ dxxfxfxp)(/)()(

5

© Kavita Bala, Computer Science, Cornell University

MC integration - Non-Uniform

• Some parts of the integration domain have
higher importance

• Generate samples according to density
function p(x)

• Estimator?

• What is optimal p(x)?

∑
=

=
N

i i

i

xp
xf

N
I

1)(
)(1

∫≈ dxxfxfxp)(/)()(

© Kavita Bala, Computer Science, Cornell University

How to sample according to pdf?
• Consider discrete events xi

– with probability pi

• Select xi if:
p1 + … pi-1 < ξ < p1 + … pi-1 + pi

1.0

0.2 0.3

ξ
Sum(pi)

0.4

i

i

j
j

i

j
j

i

j
j

i

j
ji

i

j
j

i

j
ji

i

j
j

i

j
j

pppppPxP

abbaP

ppPxP

pp

=−=∈=

−=<<

∈=

<<

∑∑∑∑

∑∑

∑∑

−

===

−

=

=

−

=

=

−

=

1

111

1

1

1

1

1

1

1

1

]),[()(

)()(

]),[()(

ξ

ξ

ξ

ξ

0.6

0.2 0.1

pi

0.1

x3x2 x4x1

6

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function
p(x)

0 1

Non-Uniform Samples

1

0

)(xp

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function
p(x)

• 2) Integrate to get a
cumulative probability
distribution function P(x):

0 1

Non-Uniform Samples

∫=
x

dttpxP
0

)()(
)(xP

1

0

)(xp

Note this is similar to computing ∑
=

i

j
jp

1

7

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function
p(x)

• 2) Integrate to get a
probability
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples

1

0

iξ

ix

)(1 ξ−= Px

∫=
x

dttpxP
0

)()(

Note this is similar to going
from y axis to x in discrete case!

© Kavita Bala, Computer Science, Cornell University

• This transforms uniform
samples into non-
uniform samples!

• Why?

• Need:
– CDF P(x)
– Inverse CDP P-1

Non-Uniform Samples

0 1

1

0

iξ

ix∫
∞−

==≤
y

dxxpyCDFyx)()()Pr(

8

© Kavita Bala, Computer Science, Cornell University

Importance Sampling

• General principle:
The closer the shape of p(x) is to the shape
of f(x), the lower the variance

• Variance can also increase if p(x) is chosen
badly

∫
=

D

xf
xfxp

)(
)()(

© Kavita Bala, Computer Science, Cornell University

Numerical Example

9

© Kavita Bala, Computer Science, Cornell University

Example: Sampling according to p(x)

• Area of a circle:

• Uniform sampling of r and θ

• Equal area sampling of r and θ

1
2

11 22

0

1

0

=







== ∫ ∫ θ

π
θ

π

π rdrdrA

π
θ

θθ
π

rrf

drdrfA

=

= ∫ ∫

),(

),(
2

0

1

0

© Kavita Bala, Computer Science, Cornell University

Example: Sampling according to p(x)

π
θθ

π
θθ

π
θθ

θθ

θ

π

2
),(),(

),(),(

),(

2

0 0

2

0

1

0

rdrdrrPrCDF

rrfrp

drdrfA

r

===

==

=

∫ ∫

∫ ∫

Equal area sampling

22
1

11
1

122

)(

2)(

)(,)(

ξξ

πξξθθ

==

==

==⇔=→=

−

−

−

rr

rr

Px

Px

rrPrrPyxxy

10

© Kavita Bala, Computer Science, Cornell University

Cosine distribution

2
1

1

2

2

0 0

2

0

1

0

cos2
2

)(

cos1)(

2
)cos1(sincos),(

sincos),(

sincos1

ξθπξφ
π
φφ

θθ

π
φθφθ

π
θθφθ

π
θθφθ

φθθθ
π

θ φ

π

−==

=

−=

−==

=

=

∫ ∫

∫ ∫

ii

F

F

ddCDF

p

ddf

© Kavita Bala, Computer Science, Cornell University

Rejection Methods
• Pick ξ1, ξ2

• If ξ2 < f(ξ1), select ξ2

• Is this efficient? What determines
efficiency? A(f)/A(rectangle)

a b

)(xf

∫=
b

a

dxxfI)(

11

© Kavita Bala, Computer Science, Cornell University

Summary

• What is Monte Carlo Integration?

• Estimators

• Sampling non-uniform distributions
– Importance Sampling
– Rejection Sampling

• Next time: How does MC apply to RE

© Kavita Bala, Computer Science, Cornell University

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dnxLfxLxL xre ω),cos()()()()(

MC applied to RE

x

L x()← Ψ

L xe ()→ Θ

L x()→ Θ

12

© Kavita Bala, Computer Science, Cornell University

Radiance Evaluation
• Many different light paths contribute to

single radiance value
– many paths are unimportant

• Tools we need:
– generate the light paths
– sum all contributions of all light paths
– clever techniques to select important paths

© Kavita Bala, Computer Science, Cornell University

Assumptions: black boxes
• Can query the scene geometry and

materials

– surface points

– light sources

– visibility checks

– tracing rays

x
N = ?
fr = ?

xn

ΘΨ

?),(=Ψ↔Θxfr

x

?)(=Θ→xLe

xn

Θ

V(x,z) = 0 or 1

13

© Kavita Bala, Computer Science, Cornell University

Rendering Equation

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ+Θ→=Θ→
x

dnxLfxLxL xre ω),cos()()()()(

∫
Ω

⋅⋅+=
x

re fL cos

function to integrate over all
incoming directions over the
hemisphere around x

Value we want

© Kavita Bala, Computer Science, Cornell University

How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ
x

dnxLf xr ω),cos()()(

14

© Kavita Bala, Computer Science, Cornell University

How to compute?
• Monte Carlo!

• Generate random directions on
hemisphere Ωx, using pdf p(Ψ)

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ=Θ→
x

dnxLfxL xr ω),cos()()()(

∑
= Ψ

Ψ⋅Ψ←⋅Θ↔Ψ
=Θ→

N

i i

xiiir

p
nxLf

N
xL

1)(
),cos()()(1)(

© Kavita Bala, Computer Science, Cornell University

How to compute?

Generate random
directions Ψi

– evaluate brdf
– evaluate cosine term
– evaluate L(x←Ψi)

∑
= Ψ

⋅Ψ←⋅
=

N

i i

ir

p
xLf

N
L

1)(
)cos()()(1 KK

15

© Kavita Bala, Computer Science, Cornell University

How to compute?

• evaluate L(x←Ψi)?

• Radiance is invariant along
straight paths

• vp(x, Ψi) = first visible point

• L(x←Ψi) = L(vp(x, Ψi) → Ψi)

© Kavita Bala, Computer Science, Cornell University

How to compute? Recursion ...

• Recursion ….

• Each additional bounce
adds one more level of
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”

16

© Kavita Bala, Computer Science, Cornell University

When to end recursion?

• Contributions of further light bounces
become less significant

• If we just ignore them, estimators will be
biased!

© Kavita Bala, Computer Science, Cornell University

P
Pyf)/(

Russian Roulette

Integral

Estimator

Variance

0 1

)(xf

P

∫∫∫ ===
P

dy
P
PyfPdx

P
xfdxxfI

0

1

0

1

0

)/()()(







>

≤=
.0

,)(

Px

Px
P
xf

I
i

i
i

roulette
 if

 if

σσ >roulette

17

© Kavita Bala, Computer Science, Cornell University

Russian Roulette

• Pick some ‘absorption probability’ α
– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10
– instead of shooting 10 rays, we shoot only 1, but

count the contribution of this one 10 times

