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• Analytical integration is difficult

• Therefore, need numerical techniques

Why Monte Carlo?
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Monte Carlo Integration

• Numerical tool to evaluate integrals

• Use sampling

• Stochastic errors

• Unbiased
– on average, we get the right answer!
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More samples
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Estimator:
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Monte Carlo Integration - 2D
• MC Integration works well for higher 

dimensions
• Unlike quadrature

∫ ∫=
b

a

d

c

dxdyyxfI ),(

∑
=

=
N

i ii

ii

yxp
yxf

N
I

1 ),(
),(1

),( yxf

© Kavita Bala, Computer Science, Cornell University

MC Advantages
• Convergence rate of O(      )

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…
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Importance Sampling

• Better use of samples by 
taking more samples in 
‘important’ regions, i.e. 
where the function is 
large
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Importance Sampling
• Generate samples from density function p(x)

• Optimal p(x)?

• General principle:
– Closer shape of p(x) is to shape of f(x), lower the 

variance
• Variance can increase if p(x) is chosen badly
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MC integration - Non-Uniform

• Some parts of the integration domain have 
higher importance

• Generate samples according to density 
function p(x)

• Estimator?

• What is optimal p(x)?
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How to sample according to pdf?
• Consider discrete events xi

– with probability pi

• Select xi if:
p1 + … pi-1 < ξ < p1 + … pi-1 + pi

1.0

0.2 0.3

ξ
Sum(pi)

0.4

i

i

j
j

i

j
j

i

j
j

i

j
ji

i

j
j

i

j
ji

i

j
j

i

j
j

pppppPxP

abbaP

ppPxP

pp

=−=∈=

−=<<

∈=

<<

∑∑∑∑

∑∑

∑∑

−

===

−

=

=

−

=

=

−

=

1

111

1

1

1

1

1

1

1

1

]),[()(

)()(

]),[()(

ξ

ξ

ξ

ξ

0.6

0.2 0.1

pi

0.1

x3x2 x4x1



6

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function 
p(x)
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Non-Uniform Samples
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• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
cumulative probability
distribution function P(x):
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• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
probability
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples
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Note this is similar to going 
from y axis to x in discrete case!
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• This transforms uniform 
samples into non-
uniform samples!

• Why?

• Need:
– CDF P(x)
– Inverse CDP P-1

Non-Uniform Samples
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Importance Sampling

• General principle:
The closer the shape of p(x) is to the shape 
of f(x), the lower the variance

• Variance can also increase if p(x) is chosen 
badly
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Numerical Example
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Example: Sampling according to p(x)

• Area of a circle:

• Uniform sampling of r and θ

• Equal area sampling of r and θ
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Example: Sampling according to p(x)
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Cosine distribution
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Rejection Methods
• Pick ξ1, ξ2

• If ξ2 < f(ξ1), select ξ2

• Is this efficient? What determines 
efficiency? A(f)/A(rectangle)
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Summary

• What is Monte Carlo Integration?

• Estimators

• Sampling non-uniform distributions
– Importance Sampling
– Rejection Sampling

• Next time: How does MC apply to RE
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Radiance Evaluation
• Many different light paths contribute to 

single radiance value
– many paths are unimportant

• Tools we need:
– generate the light paths
– sum all contributions of all light paths
– clever techniques to select important paths
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Assumptions: black boxes
• Can  query the scene geometry and 

materials

– surface points

– light sources

– visibility checks

– tracing rays
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Rendering Equation
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How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?
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How to compute?
• Monte Carlo!

• Generate random directions on 
hemisphere Ωx, using pdf p(Ψ)
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How to compute?

Generate random 
directions Ψi

– evaluate brdf
– evaluate cosine term
– evaluate L(x←Ψi)
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How to compute?

• evaluate L(x←Ψi)?

• Radiance is invariant along 
straight paths

• vp(x, Ψi) = first visible point

• L(x←Ψi) = L(vp(x, Ψi) → Ψi)
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How to compute? Recursion ...

• Recursion ….

• Each additional bounce 
adds one more level of 
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”
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When to end recursion?

• Contributions of further light bounces 
become less significant

• If we just ignore them, estimators will be 
biased!
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Russian Roulette

• Pick some ‘absorption probability’ α
– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10
– instead of shooting 10 rays, we shoot only 1, but 

count the contribution of this one 10 times


