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Rendering Equation

incoming radiance
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RE: Area Formulation

Ray-casting function: what
is the nearest visible surface
point seen from x in direction W?
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Rendering Equation
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Rendering Equation: visible surfaces

Coordinate transform L

/

Integration domain = visible surface points y

* Integration domain extended to ALL surface
points by including visibility function
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Rendering Equation: all surfaces
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Two forms of the RE

* Hemisphere integration

* Area integration (over polygons from set A)
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Radiance evaluation

* Fundamental problem in Gl algorithms

— Evaluate radiance at a given surface pointin a
given direction

— Invariance defines radiance everywhere else

P
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Radiance evaluation

... find paths between sources and surfaces to be shaded
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Hard to find paths
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Why Monte Carlo?

* Radiance is hard to evaluate

» Sample many pa : integrate over all incoming
directions
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Why Monte Carlo?
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Why Monte Carlo?

* Analytical integration is difficult

» Therefore, need numerical techniques
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Monte Carlo Integration

* Numerical tool to evaluate integrals

Use sampling

Stochastic errors

Unbiased
—on average, we get the right answer!
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Probability

* Random variable x

* Possible outcomes:
— each with probability:

» E.g. ‘average die’: 2,3,3,4,4,5

— outcomes:

— probabilities:
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Expected value

» Expected value = average value

» E.g. die:
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Variance

+ Expected ‘distance’ to expected value

« E.g. die:

* Property:
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Continuous random variable

* Random variable
Probability density function (pdf)
Probability that variable has value x:

» Cumulative distribution function (CDF)
— CDF is non-decreasing, positive
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Continuous random variable

» Expected value:

» Variance:

* Deviation:
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Continuous random variable

Probability that x belongs to [a’,b’]
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Uniform distribution
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Uniform distribution

a a’ b b

Probability that x belongs to [a’,b’]
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More than one sample

» Consider the weighted sum of N samples

» Expected value

» Variance

» Deviation
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More than one sample

» Consider the weighted sum of N samples

» Expected value

» Variance

» Deviation
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Numerical Integration

* A one-dimensional integral:
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Deterministic Integration

* Quadrature rules:
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Monte Carlo Integration

Primary estimator:
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Monte Carlo Integration

Primary estimator:

Unbiased estimator!
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Monte Carlo Integration

Primary estimator:

Unbiased estimator!
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Monte Carlo Integration: Error

More samples

Variance of the estimator — a measure of
the stochastic error
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Secondary estimator

Generate N random samples x;

Estimator:

Variance

More samples

Monte Carlo Integration

Secondary estimator

Generate N random samples x;

Estimator:

Variance
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» Expected value of estimator

—on ‘average’ get right result: unbiased

» Standard deviation ¢ is a measure of the
stochastic error
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Convergence Rates

MC Integration - Example

* RMS error converges at a rate of O( )
* Unbiased
» Chebychev’s inequality

 Strong law of large numbers
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— Integral

— Uniform sampling

— Samples :
,.(}————-—Q'Q‘/
x,= .86 <I>=2.74
X, = .41 <I>=1.44
X;= .02 <I>=10.96

x,= 38 <1>=0.75
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MC Integration - Example

— Integral

— Stochastic

error " 0 0 gk
] (AL { |"I'"'+.|”\!'Ill

— Variance
= What is it?
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MC Integration: 2D

* Primary estimator:
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MC Integration: 2D

+ Secondary estimator:
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Monte Carlo Integration - 2D

» MC Integration works well for higher
dimensions

* Unlike quadrature
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MC Advantages

» Convergence rate of O( ')

» Simple
— Sampling
— Point evaluation
— Can use black boxes

* General
— Works for high dimensions
— Deals with discontinuities, crazy functions,...
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MC Integration - 2D example

* Integration over hemisphere:

)
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Hemisphere Integration example

Importance Sampling

Irradiance due to light source:

© Kavita Bala, Computer Science, Cornell University

» Better use of samples by
taking more samples in
‘important’ regions, i.e.
where the function is
large
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MC integration - Non-Uniform

MC integration - Non-Uniform

» Some parts of the integration domain have
higher importance

» Generate samples according to density
function p(x)

» Estimator?

* What is optimal p(x)?
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» Generate samples according to density
function p(x)

* Why?
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Example

¢ Function:
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Monte Carlo Integration

Primary estimator:
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Monte Carlo Integration

Primary estimator:

Unbiased estimator!
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Monte Carlo Integration: Error

Variance of the estimator:

— a measure of the stochastic error
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More samples

Secondary estimator

Generate N random samples x;

Estimator:

Variance
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