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Radiometry

» Radiometry: measurement of light energy

* Defines relation between
— Power
— Energy
— Radiance
— Radiosity
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Power

* Energy: Symbol: Q; unit: Joules

+ Power: Energy per unit time (dQ/df)
— Aka. “radiant flux” in this context

* Symbol: P or @; unit: Watts (Joules / sec)
— Photons per second

— All further quantities are
derivatives of P
(flux densities)
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Irradiance

» Power per unit area (dP/dA)
— That is, area density of power
— It is defined with respect to a surface
« Symbol: E; unit: W/ m? \ l
— Measurable as power on a \ é
small-area detector

— Area power density exiting a
surface is called

radiant exitance (M) '\\ T
or radiosity (B) but has
the same units
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Radiance

* Radiance is radiant energy at x in
direction 6: 5D function

- : Power
= per unit projected surface area
= per unit solid angle

dA4+
—units: Watt / m2.sr X
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Why is radiance important?

» Response of a sensor (camera, human
eye) is proportional to radiance

eye

» Pixel values in image proportional to
radiance received from that direction

© Kavita Bala, Computer Science, Cornell University




Relationships

» Radiance is the fundamental quantity

* Power:

» Radiosity:

© Kavita Bala, Computer Science, Cornell University

Outline

+ Light Model

» Radiance
» Materials: Interaction with Iight‘

* Rendering equation
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Materials - Three Forms

Ideal diffuse
(Lambertian)

\é splgst?llar

Directional
diffuse
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BRDF

« Bidirectional Reflectance Distribution
Function

Light N Detector
Source
)
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BRDF special case: ideal diffuse

Pure Lambertian
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Properties of the BRDF

* Reciprocity:

» Therefore, notation:

+ Important for bidirectional tracing
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Properties of the BRDF

* Bounds:

e Energy conservation:
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Outline

Light Model SM %

Radiance

Materials: Interaction with light ‘

Rendering equation
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Light Transport
* Goal
— Describe steady-state radiance distribution in
scene

» Assumptions:
— Geometric Optics
— Achieves steady state instantaneously

* Related:
— Neutron Transport (neutrons)
— Gas Dynamics (molecules)
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Radiance represents equilibrium

» Radiance values at all points in the scene
and in all directions expresses the
equilibrium

* 4D function: only on surfaces

o

® "
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Rendering Equation (RE)

» RE describes energy transport in scene

* Input
— Light sources
— Surface geometry
— Reflectance characteristics of surfaces

» Output: value of radiance at all surface
points in all directions
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Rendering Equation
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Rendering Equation
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Rendering Equation
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Rendering Equation
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Rendering Equation

Rendering Equation

incoming radiance
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L Le Lr
i x X + X
= +
L(x«<Y¥)

e Applicable for each wavelength
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Summary

* Geometric Optics

Goal:

—to compute steady-state radiance values in
scene

Rendering equation:

— mathematical formulation of problem that global
illumination algorithms must solve
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Shading Models

(brti) splar diffuse

= . AP
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Ideal Specular Reflection

* Calculated from Fresnel's equations
» Exact for polished surfaces
* Basis of early ray-tracing methods
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Fresnel Equations
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Fresnel Reflectance

for unpolarized light

+ Equations apply for metals and nonmetals
— for metals, use complex index 1 = n+ik
— for nonmetals, k=0
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Metal vs. Nonmetal

Fresnel reflectance

P2 90
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Mies van der Rohe’s unbuilt Courtyard House
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Ideal Diffuse Reflection

» Characteristic of multiple scattering
materials

An idealization but reasonable for matte
surfaces

* Basis of most radiosity methods
BRDF is a constant function
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Directional Diffuse Reflection

» Characteristic of most rough surfaces
» Described by the BRDF
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Classes of Models for the BRDF

* Plausible simple functions
— Phong 1975;

* Physics-based models
— Cook/Torrance, 1981; He et al. 1992;

» Empirically-based models
—Ward 1992, Lafortune model
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Phong Reflection Model

Mirror
Reflection

L R Vector
\ [ > v

Diffuse Specular

Diffuse =/, (N -L)  Specular =
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The Blinn-Phong Model

H Half-Vector
L Specular
/

\"
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Phong: Reality Check

Phong model

Physics-based model

Computationally simple, visually pleasing

Doesn’t represent physical reality
— Energy not conserved
— Not reciprocal

— Maximum always in specular direction
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Phong: Reality Check

Real photographs

mimmiin

Phong model

Therefore, physically-based models
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The Modified Blinn-Phong Model
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Cook-Torrance BRDF Model

» A microfacet model

— Surface modeled as random collection of
planar facets

— Incoming ray hits exactly one facet, at random
* Input: probability distribution of facet angle
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Facet Reflection

« H vector used to define facets that
contribute
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Cook-Torrance BRDF Model

 “Specular” term (really directional diffuse)

* Fresnel reflectance for smooth facet
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Facet Distribution

» D function describes distribution of H

e Formula due to Beckmann

— derivation based on Gaussian height
distribution
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Masking and Shadowing

Y 4
L i
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Rob Cook’s vases

crassan DOUICE: COOK, Torrance 1981

Empirical BRDF Representation

* Generalized Phong model (Lafortune
1997)
» Used to represent:
— Measured data
— Wave optics reflectance model
* Features:
— Efficient and compact
— Easily added to rendering algorithms
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Ward Model

* Physically valid
— Energy conserving
— Satisfies reciprocity:
» Based on empirical data
* |sotropic and anisotropic materials
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Ward Model: Isotropic

» where,
— a is surface roughness
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Ward Model: Anisotropic

» where,
-, o, are surface roughness in
- are mutually perpendicular to the normal
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