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Radiometry

• Radiometry: measurement of light energy

• Defines relation between
– Power
– Energy
– Radiance
– Radiosity
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Power
• Energy: Symbol: Q; unit: Joules
• Power: Energy per unit time (dQ/dt) 

– Aka. “radiant flux” in this context
• Symbol: P or Φ; unit: Watts (Joules / sec)

– Photons per second
– All further quantities are

derivatives of P
(flux densities)
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• Power per unit area (dP/dA)
– That is, area density of power 
– It is defined with respect to a surface

• Symbol: E; unit: W / m2

– Measurable as power on a
small-area detector

– Area power density exiting a
surface is called
radiant exitance (M)
or radiosity (B) but has
the same units

Irradiance



3

© Kavita Bala, Computer Science, Cornell University

Radiance

• Radiance is radiant energy at x in 
direction θ: 5D function
– : Power

per unit projected surface area
per unit solid angle

– units: Watt / m2.sr
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Why is radiance important? 

• Response of a sensor (camera, human 
eye) is proportional to radiance

• Pixel values in image proportional to 
radiance received from that direction

eye



4

© Kavita Bala, Computer Science, Cornell University

Relationships
• Radiance is the fundamental quantity

• Power:

• Radiosity:  
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Outline

• Light Model

• Radiance

• Materials: Interaction with light

• Rendering equation
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Materials - Three Forms

Ideal diffuse 
(Lambertian)

Ideal
specular

Directional
diffuse
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• Bidirectional Reflectance Distribution 
Function

BRDF
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BRDF special case: ideal diffuse

Pure Lambertian
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Properties of the BRDF

• Reciprocity:

• Therefore, notation:

• Important for bidirectional tracing
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Properties of the BRDF
• Bounds:
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• Energy conservation:

© Kavita Bala, Computer Science, Cornell University

Outline

• Light Model

• Radiance

• Materials: Interaction with light

• Rendering equation
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Light Transport
• Goal

– Describe steady-state radiance distribution in 
scene

• Assumptions:
– Geometric Optics
– Achieves steady state instantaneously

• Related:
– Neutron Transport (neutrons)
– Gas Dynamics (molecules)
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Radiance represents equilibrium
• Radiance values at all points in the scene 

and in all directions expresses the 
equilibrium

• 4D function: only on surfaces
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Rendering Equation (RE)
• RE describes energy transport in scene

• Input
– Light sources
– Surface geometry
– Reflectance characteristics of surfaces

• Output: value of radiance at all surface 
points in all directions
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Rendering Equation
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Rendering Equation
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Rendering Equation

)( Θ→xLe

Le

x=

=

+

+

Lr

x

)( Ψ←xL ...∫
hemisphere

x

)( Θ→xL

L
Θ



11

© Kavita Bala, Computer Science, Cornell University

Rendering Equation
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Rendering Equation
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Rendering Equation
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Summary

• Geometric Optics

• Goal: 
– to compute steady-state radiance values in 

scene

• Rendering equation: 
– mathematical formulation of problem that global 

illumination algorithms must solve
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Shading Models
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Reflectance—Three Forms

Ideal diffuse 
(Lambertian)

Directional
diffuse

Ideal
specular
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Ideal Specular Reflection
• Calculated from Fresnel’s equations
• Exact for polished surfaces
• Basis of early ray-tracing methods

© Kavita Bala, Computer Science, Cornell University

Fresnel Equations
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Fresnel Reflectance
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= for unpolarized light

• Equations apply for metals and nonmetals
– for metals, use complex index η = n+ik
– for nonmetals, k=0
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Metal vs. Nonmetal

Metals

Nonmetals (k=0)

0
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θ

Fresnel reflectance
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Mies van der Rohe’s unbuilt Courtyard House
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Ideal Diffuse Reflection
• Characteristic of multiple scattering 

materials
• An idealization but reasonable for matte 

surfaces
• Basis of most radiosity methods
• BRDF is a constant function
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Directional Diffuse Reflection
• Characteristic of most rough surfaces
• Described by the BRDF
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Classes of Models for the BRDF
• Plausible simple functions

– Phong 1975;

• Physics-based models
– Cook/Torrance, 1981; He et al. 1992; 

• Empirically-based models
– Ward 1992, Lafortune model
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The Blinn-Phong Model
Half-Vector
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Physics-based modelPhong model

Phong: Reality Check

• Computationally simple, visually pleasing 
• Doesn’t represent physical reality

– Energy not conserved
– Not reciprocal
– Maximum always in specular direction
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The Modified Blinn-Phong Model

d
n

sr kHNkf +=Ψ↔Θ ).()(



20

© Kavita Bala, Computer Science, Cornell University

Phong: Reality Check
Real photographs

Phong model

Therefore, physically-based models

© Kavita Bala, Computer Science, Cornell University

Cook-Torrance BRDF Model
• A microfacet model

– Surface modeled as random collection of 
planar facets

– Incoming ray hits exactly one facet, at random
• Input: probability distribution of facet angle



21

© Kavita Bala, Computer Science, Cornell University

N

VL

H
α 

θ 
θ 

Facet Reflection
• H vector used to define facets that 

contribute
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Fresnel Reflectance

Cook-Torrance BRDF Model

• “Specular” term (really directional diffuse)

• Fresnel reflectance for smooth facet
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Facet Distribution
• D function describes distribution of H
• Formula due to Beckmann

– derivation based on Gaussian height 
distribution
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Masking and Shadowing
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Rob Cook’s vases

Source: Cook, Torrance 1981
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Empirical BRDF Representation
• Generalized Phong model (Lafortune

1997)
• Used to represent:

– Measured data
– Wave optics reflectance model

• Features:
– Efficient and compact
– Easily added to rendering algorithms
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Ward Model
• Physically valid

– Energy conserving
– Satisfies reciprocity:  

• Based on empirical data
• Isotropic and anisotropic materials
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Ward Model: Isotropic

• where, 
– α is surface roughness
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Ward Model: Anisotropic

• where, 
– αx, αy are surface roughness in
– are mutually perpendicular to the normal
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