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Radiosity+Importance
• Radiosity+Importance: Bidirectional



2

© Kavita Bala, Computer Science, Cornell University

Importance Radiosity (IR)
• Motivation

– O(k2 + n) is too slow
– HR oversolves globally, undersolves locally

• Insight: Exploit view dependence

• Importance: Direct or indirect contribution 
of patch to image from this view point
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Radiosity, Importance

Radiosity: Forward Importance: Backward
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IR Intuition
• Importance: adjoint formulation of radiosity
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IR Algorithm
• Solves for dual system simultaneously

• Importance is shot by treating eye as light 
source

• Importance Ri proportional Ai on image
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Radiosity Equation
• Radiosity for each polygon i

• Linear system
– Βi      : radiosity of patch i (unknown)
– Βe,i   : emission of patch i (known)
– ρI         : reflectivity of patch i (known)
– F(i→j): form-factor (coefficients of matrix)
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IR Intuition
• I1 = R1 + ρ2F21I2 + ρ3F31I3 +…
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Importance Radiosity
• Elegant formulation of bidirectional 

propagation
– Replaces ad-hoc solutions

• IR restricted to one viewpoint
– Need to unmesh as viewpoint moves
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Motivation

eye

scene
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What is the behavior of light?

• Physics of light

• Radiometry

• Material properties

• Rendering Equation
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• Geometric Optics
– Emission
– Reflection / Refraction
– Absorption

• Simplest model

• Size of objects > wavelength of light

Models of Light
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Radiometry

• Radiometry: measurement of light energy

• Defines relation between
– Power
– Energy
– Radiance
– Radiosity
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Digression: Hemispheres
• Hemisphere = two-dimensional surface
• Direction = point on (unit) sphere
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Digression: Solid angles

θ =
L
R

L
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Full circle = 2π radians

2D 3D

Full sphere = 4π steradians
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Digression: Solid angles

Full circle = 2π radians
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Digression: Solid angle
• Full sphere = 4π steradian = 12.566 sr

• Dodecahedron = 12-sided regular 
polyhedron; 1 face = 1 sr
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Hemispherical coordinates
• Direction = point on (unit) sphere
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Hemispherical coordinates

• Defined a measure over hemisphere
• dω = direction vector
• Differential solid angle

ϕθθω dd
r
dAd sin2 ==
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Hemispherical integration
• Area of hemisphere:



11

© Kavita Bala, Computer Science, Cornell University

Hemispherical integration
• Area of hemisphere:
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Power
• Energy: Symbol: Q; unit: Joules
• Power: Energy per unit time (dQ/dt) 

– Aka. “radiant flux” in this context
• Symbol: P or Φ; unit: Watts (Joules / sec)

– Photons per second
– All further quantities are

derivatives of P
(flux densities)
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• Power per unit area (dP/dA)
– That is, area density of power 
– It is defined with respect to a surface

• Symbol: E; unit: W / m2

– Measurable as power on a
small-area detector

– Area power density exiting a
surface is called
radiant exitance (M)
or radiosity (B) but has
the same units

Irradiance
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Irradiance example
• Uniform point source illuminates small 

surface dA from distance r
– Think of it as a piece of a sphere
– Power P is uniformly spread 

over the area of the sphere
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Radiance

• Radiance is radiant energy at x in 
direction θ: 5D function
– : Power

per unit projected surface area
per unit solid angle

– units: Watt / m2.sr
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• Power per unit (solid angle times area)
– Counts photons that (a) go through a little 

area around x perpendicular to Θ and (b) are 
traveling in directions that fall in a little solid 
angle around Θ

– Irradiance per unit solid angle

– A 2nd derivative of P

Radiance
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Radiance: Projected area
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• Why per unit projected surface area?
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Why is radiance important?

• Invariant along a straight line (in vacuum)
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Invariance of Radiance
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Why is radiance important? 

• Response of a sensor (camera, human 
eye) is proportional to radiance

• Pixel values in image proportional to 
radiance received from that direction

eye
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Wavelength Dependence
• Each particle has a wavelength

• All radiometric quantities depend on 
wavelength

• Spectral radiance:

• Radiance: 
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Relationships
• Radiance is the fundamental quantity

• Power:

• Radiosity:  
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Example: Diffuse emitter
• Diffuse emitter: light source with equal 

radiance everywhere
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Sun Example: radiance
• Power: 3.91 x 1026 W
• Surface Area: 6.07 x 1018 m2

• Power     = Radiance.Surface Area.π
• Radiance = Power/(Surface Area.π)

• Radiance = 2.05 x 107 W/ m2.sr 
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Sun Example

Same radiance on Earth and Mars?
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Sun Example: Power on Earth
• Power reaching earth on a 1m2 square:
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• Assume cosθ = 1 (sun in zenith)



19

© Kavita Bala, Computer Science, Cornell University

Sun Example: Power on Earth

Power = Radiance.Area.Solid Angle

Solid Angle = Projected AreaSun/(distanceearth_sun)2

= 6.7 10-5 sr

P = (2.05 x 107 W/ m2.sr)  x (1 m2 ) x (6.7 10-5 sr) 
= 1373.5 Watt
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Sun Example: Power on Mars

Power = Radiance.Area.Solid Angle

Solid Angle = Projected AreaSun/(distancemars_sun)2

= 2.92 10-5 sr

P = (2.05 x 107 W/ m2.sr)  x (1 m2 ) x (2.92 10-5 sr) 
= 598.6 Watt


