Lecture 4: Radiometry and Rendering Equation
 Chapter 2 in Advanced GI

Fall 2004
Kavita Bala
Computer Science
Cornell University

Radiosity+Importance

- Radiosity+Importance: Bidirectional

Importance Radiosity (IR)

- Motivation
$-\mathrm{O}\left(\mathrm{k}^{2}+\mathrm{n}\right)$ is too slow
- HR oversolves globally, undersolves locally
- Insight: Exploit view dependence
- Importance: Direct or indirect contribution of patch to image from this view point

Radiosity, Importance

Radiosity: Forward

Importance: Backward

IR Intuition

- Importance: adjoint formulation of radiosity

p

IR Algorithm

- Solves for dual system simultaneously
- Importance is shot by treating eye as light source
- Importance R_{i} proportional A_{i} on image

Radiosity Equation

- Radiosity for each polygon i

$$
\forall i: B_{i}=B_{e, i}+\rho_{i} \sum_{j=1}^{N} B_{j} F(i \rightarrow j)
$$

- Linear system
- $\mathrm{B}_{\mathrm{i}} \quad$: radiosity of patch i (unknown)
$-B_{e, i}$: emission of patch i (known)
- $\rho_{l} \quad$: reflectivity of patch i (known)
- $\mathrm{F}(\mathrm{i} \rightarrow \mathrm{j})$: form-factor (coefficients of matrix)

Importance Radiosity

- Elegant formulation of bidirectional propagation
- Replaces ad-hoc solutions
- IR restricted to one viewpoint
- Need to unmesh as viewpoint moves

What is the behavior of light?

- Physics of light

- Radiometry
- Material properties

- Rendering Equation

Models of Light

- Geometric Optics
-Emission
- Reflection / Refraction
- Absorption
- Simplest model
- Size of objects > wavelength of light

Radiometry

- Radiometry: measurement of light energy
- Defines relation between
- Power
- Energy
- Radiance
- Radiosity

Digression: Hemispheres

- Hemisphere = two-dimensional surface
- Direction = point on (unit) sphere

Digression: Solid angles

Full circle $=2 \pi$ radians

3D

$\Omega=\frac{\mathrm{A}}{\mathrm{R}^{2}}$

Full sphere $=4 \pi$ steradians

Full circle $=2 \pi$ radians

Full sphere $=4 \pi$ steradians

Digression: Solid angle

- Full sphere $=4 \pi$ steradian $=12.566 \mathrm{sr}$
- Dodecahedron = 12-sided regular polyhedron; 1 face $=1 \mathrm{sr}$

Hemispherical coordinates

- Direction = point on (unit) sphere

$d A=(r \sin \theta d \varphi)(r d \theta)$

Hemispherical coordinates

- Defined a measure over hemisphere
- $d \omega=$ direction vector
- Differential solid angle

$$
d \omega=\frac{d A}{r^{2}}=\sin \theta d \theta d \varphi
$$

- Area of hemisphere:

Hemispherical integration

- Area of hemisphere:

$$
\begin{aligned}
\int_{\Omega_{x}} d \omega & =\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi / 2} \sin \theta d \theta \\
& =\int_{0}^{2 \pi} d \varphi[-\cos \theta]_{0}^{\pi / 2} \\
& =\int_{0}^{2 \pi} d \varphi \\
& =2 \pi
\end{aligned}
$$

Power

- Energy: Symbol: Q; unit: Joules
- Power: Energy per unit time ($d Q / d t$)
- Aka. "radiant flux" in this context
- Symbol: P or Φ; unit: Watts (Joules / sec)
- Photons per second
- All further quantities are derivatives of P
(flux densities)

Irradiance

- Power per unit area ($d P / d A$)
- That is, area density of power
- It is defined with respect to a surface
- Symbol: E; unit: W / m²
- Measurable as power on a small-area detector
- Area power density exiting a surface is called radiant exitance (M) or radiosity (B) but has the same units

Irradiance example

- Uniform point source illuminates small surface $d A$ from distance r
- Think of it as a piece of a sphere
- Power P is uniformly spread over the area of the sphere

Radiance

- Radiance is radiant energy at x in direction θ : 5D function
$-\quad L(x \rightarrow \Theta)$: Power
- per unit projected surface area
- per unit solid angle

Radiance

- Power per unit (solid angle times area)
- Counts photons that (a) go through a little area around x perpendicular to Θ and (b) are traveling in directions that fall in a little solid angle around Θ
- Irradiance per unit solid angle
- A $2^{\text {nd }}$ derivative of P

Why is radiance important?

- Invariant along a straight line (in vacuum)

Invariance of Radiance

Why is radiance important?

- Response of a sensor (camera, human eye) is proportional to radiance

- Pixel values in image proportional to radiance received from that direction

Wavelength Dependence

- Each particle has a wavelength
- All radiometric quantities depend on wavelength
- Spectral radiance: $L(x \rightarrow \Theta, \lambda)$
- Radiance: $L(x \rightarrow \Theta)=\int L(x \rightarrow \Theta, \lambda) d \lambda$

Relationships

- Radiance is the fundamental quantity

$$
L(x \rightarrow \Theta)=\frac{d^{2} P}{d A^{\perp} d \omega_{\Theta}}
$$

- Power:

$$
P=\int_{\text {Area Solid }}^{\text {Angle }} \int_{\text {a }} L(x \rightarrow \Theta) \cdot \cos \theta \cdot d \omega_{\Theta} \cdot d A
$$

- Radiosity:

Example: Diffuse emitter

- Diffuse emitter: light source with equal radiance everywhere

$$
L(x \rightarrow \Theta)=\frac{d^{2} P}{d A^{\perp} d \omega_{\Theta}}
$$

$=L \int_{\text {Area }}^{\text {Angle }} d A \int_{\text {Solid }} \cos \theta \cdot d \omega_{\Theta}$
Angle
$=L \cdot$ Area $\cdot \pi$

Sun Example: radiance

- Power: $3.91 \times 10^{26} \mathrm{~W}$
- Surface Area: $6.07 \times 10^{18} \mathrm{~m}^{2}$
- Power = Radiance.Surface Area. π
- Radiance = Power/(Surface Area. π)
- Radiance $=2.05 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{sr}$

Sun Example

Same radiance on Earth and Mars?
 © Kavita Bala, Computer Science, Cornell University

Sun Example: Power on Earth

- Power reaching earth on a $1 \mathrm{~m}^{2}$ square:

- Assume $\cos \theta=1$ (sun in zenith)

```
P=L \ Areal ciccuc
```


Sun Example: Power on Earth

Power = Radiance.Area.Solid Angle

Solid Angle $=$ Projected Area $_{\text {sun }} /\left(\text { distance }_{\text {earth_sun }}\right)^{2}$ $=6.710^{-5} \mathrm{sr}$

$$
\begin{aligned}
P & =\left(2.05 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{sr}\right) \times\left(1 \mathrm{~m}^{2}\right) \times\left(6.710^{-5} \mathrm{sr}\right) \\
& =1373.5 \mathrm{Watt}
\end{aligned}
$$

Sun Example: Power on Mars

Power = Radiance.Area.Solid Angle

Solid Angle $=$ Projected Area $_{\text {sun }} /\left(\text { distance }_{\text {mars_sun }}\right)^{2}$ $=2.9210^{-5} \mathrm{sr}$

$$
\begin{aligned}
\mathrm{P} & =\left(2.05 \times 10^{7} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{sr}\right) \times\left(1 \mathrm{~m}^{2}\right) \times\left(2.9210^{-5} \mathrm{sr}\right) \\
& =598.6 \mathrm{Watt}
\end{aligned}
$$

