

Radiosity Algorithm

- Subdivide scene in polygons
 mesh that determines final solution
- Compute Form Factors – transfer of energy between polygons
- Solve linear system

 results in power (color) per polygon
- Pick a viewpoint and display
 loop

© Kavita Bala, Computer Science, Cornell University

Form Factors - how to compute? Closed Form – Analytic Hemicube Monte-Carlo

© Kavita Bala, Computer Science, Cornell University

How To Solve Linear System Matrix Inversion Gathering methods Jacobi iteration Gauss-Seidel Shooting Southwell iteration

- Improved Southwell iteration

Southwell Iteration

- "Shooting" method
- Start with initial guess for light distribution (light sources)
- Select patch and distribute its energy over all polygons

Progressive Refinement

- Southwell selects shooting patches in no particular order
- Progressive refinement radiosity selects patch with largest unshot energy
- First image is generated fairly quickly!

© Kavita Bala, Computer Science, Cornell University

Radiosity Algorithms

- · Object (scene) based
- Assumptions
 - Polygons
 - Diffuse BRDFs
 - Diffuse light sources
 - Static scenes
 - "Constant polygon" assumption does not capture high frequency illumination (e.g. shadow cast by a fence)

© Kavita Bala, Computer Science, Cornell University

Radiosity

- Does not handle non-diffuse surfaces
- "Constant polygon" assumption does not capture high frequency illumination (e.g. shadow cast by a fence)
- Non-polygonal objects are a problem

Summary

- Discrete form of rendering equation
- Form Factor computations
- Different ways of solving the linear system (Jacobi, Gauss Seidel, Southwell)
- HR, Importance, Discontinuities

© Kavita Bala, Computer Science, Cornell University

CS 665 Radiometry and the Rendering Equation Chapter 2 in Advanced GI

What is this course about

- What does image generation mean?
 Physics of light
- How to generate images?
 Global illumination algorithms

How do we this efficiently? Intra-Program of Computer Computer

Brief history of Optics (contd.)

Hertz (1887)

- Discovered the photoelectric effect
 The process whereby electrons are liberated from
 - materials under the action of radiant energy
- Einstein (1905)
 - Explained photoelectric effect
 - Light is a stream of quantized energy packets called quanta (photons)
 - -E = h v

© Kavita Bala, Computer Science, Cornell University

Brief history of Optics (contd.)

- Particle and wave theory seemingly mutually exclusive
- Quantum Mechanics
 - Bohr, Born, Heisenberg, Schrodinger, Pauli
 - Sub-microscopic phenomena
 - Unite particle and wave behavior of light
 - QED by Feynman

