Lecture 2: Radiosity

Fall 2004

Kavita Bala
Computer Science

Cornell University

Information

» Office Hours
— Wed: 2-3 Upson 5142

* Web-page

» www.cs.cornell.edu/courses/cs665/2004fa/
— Tentative schedule
— Homeworks, lecture notes, will be on-line
— Check for updates and announcements

© Kavita Bala, Computer Science, Cornell University

Classic Ray Tracing

* Image-based

» Gathering approach
— from the light sources (direct illumination)
— from the reflected direction (perfect specular)
— from the refracted direction (perfect specular)

« All other contributions are ignored!
— Not a complete solution

©Kavita Bala, Computer Science, Comnell University

Whitted RT Assumptions

+ Light Source: point light source
— Hard shadows
— Single shadow ray direction

» Material: Blinn-Phong model
— Diffuse with specular peak

* Light Propagation
— Occluding objects
— Specular interreflections only
= trace rays in mirror reflection direction only

© Kavita Bala, Computer Science, Comell University

Other approaches

 Classic ray tracing:

— Only perfect specular and perfect
refraction/reflection

— View-dependent

« Radiosity (1984)
— Pure diffuse
— View-independent

* Monte Carlo Ray Tracing (1986)
— Global lllumination for any environment

© Kavita Bala, Computer Science, Comell University

Radiosity Advantages

Physically based approach for diffuse
environments

« Can model diffuse interactions, color
bleeding, indirect lighting and penumbra
(area light sources)

Boundary element (finite element)
problem

* Accounts for very high percentage of total
energy transfer

© Kavita Bala, Computer Science, Cornell University

Key ldea #1: diffuse only

» Radiance independent of direction

 Surface looks the same from any
viewpoint

* No specular reflections

© Kavita Bala, Computer Science, Cornell University

Diffuse surfaces

* Diffuse emitter
L(x—®) = constant over © &
« Diffuse reflector

Reflectivity constant
© Kavita Bala, Computer Science, Cornell University

Key ldea #2: “constant”polygons

» Radiosity solution is an approximation,
due to discretization of scene into
patches

—

» Subdivide scene into small polygons

©Kavita Bala, Computer Science, Comnell University

Constant radiance approximation

—

« Radiance is constant over a surface
element
L(x) = constant over x

+ surface element i: L(x) = L,

© Kavita Bala, Computer Science, Comell University

Radiosity Equation

Emitted radiosity = self-emitted radiosity + received & reflected radiosity

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation

» Radiosity equation for each polygon i

* N equations; N unknown variables

© Kavita Bala, Computer Science, Cornell University

Radiosity algorithm

» Subdivide the scene into small polygons

» Compute for each polygon a constant
illumination value

» Choose a viewpoint, and display the visible
polygons

© Kavita Bala, Computer Science, Cornell University

Radiosity algorithm

» Subdivide the scene in small polygons

» Compute for each polygon a constant
illumination value

» Choose a viewpoint, and display the
visible polygons

* Choose a new viewpoint
* ... and another
* ... and another

© Kavita Bala, Computer Science, Cornell University

Radiosity: Typical Image

© Kavita Bala, Computer Science, Comell University

Energy Conservation Equation

‘D4

A -
FG3s1)
M’/ w .
F(4—s1)

\ /

© Kavita Bala, Computer Science, Comell University

Compute Form Factors

© Kavita Bala, Computer Science, Cornell University

Form Factors Invariant

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation

» Radiosity for each polygon i

* Linear system
— B, :radiosity of patch i (unknown)
— Be; :emission of patch i (known)
— p, :reflectivity of patch i (known)
— F(i—j): form-factor (coefficients of matrix)

© Kavita Bala, Computer Science, Cornell University

Linear System

known known

unknown

© Kavita Bala, Computer Science, Cornell University

Linear System

(S}
w —
N

N NN
W R R
R AR
NSV

©Kavita Bala, Computer Science, Comnell University

Radiosity Algorithm

» Subdivide scene in polygons
— mesh that determines final solution
* Compute Form Factors
— transfer of energy between polygons
* Solve linear system
—results in power (color) per polygon
 Pick a viewpoint and display
—loop

© Kavita Bala, Computer Science, Comell University

Form Factor

* Fi,; = the fraction of power
emitted by j, which is
received by i

* Area
—if i is smaller, it receives
less power
* Orientation
—if i faces j, it receives
more power
» Distance
—if i is further away, it
receives less power

© Kavita Bala, Computer Science, Comell University

Form Factors - how to compute?

* Closed Form
— Analytic

* Hemicube

* Monte-Carlo

© Kavita Bala, Computer Science, Cornell University

Form Factor — Analytical

0,7 * Equations for special

0, /r, cases (polygons)
* In general hard problem
! « Visibility makes it harder

© Kavita Bala, Computer Science, Cornell University

Form Factors - Hemicube

* Project patch on hemicube
* Add hemicube cells to compute form factor

\

© Kavita Bala, Computer Science, Cornell University

Form Factors - Hemicube

Depth information per pixel evaluates visibility
FFs for all polygons in scene
Hardware rendering (Z-buffer)

Severe aliasing: Small polygons “disa;]iear"

©Kavita Bala, Computer Science, Comnell University

FF - Monte Carlo

» Generate point on patch i
» Generate point on patch j
Evaluate integrand
+ Compute average

© Kavita Bala, Computer Science, Comell University

Form Factors

* Visibility checks are most expensive
operation

* FFs are usually computed when needed
— computationally expensive
—memory O(NZ2)

© Kavita Bala, Computer Science, Comell University

Radiosity Algorithm

+ Subdivide scene in polygons
— mesh that determines final solution
» Compute Form Factors
— transfer of energy between polygons
+ Solve linear system
—results in power (color) per polygon
* Pick a viewpoint and display
—loop

© Kavita Bala, Computer Science, Cornell University

How To Solve Linear System

¢ Matrix Inversion

» Gathering methods
— Jacobi iteration
— Gauss-Seidel

» Shooting
— Southwell iteration
— Improved Southwell iteration

© Kavita Bala, Computer Science, Cornell University

Matrix Inversion

O(n?)

© Kavita Bala, Computer Science, Cornell University

patches per side patches

49 ol 49 v side
constant coloring per patch RGE plot linens interpolation RGE plot

Iterative approaches

 Jacobi iteration

« Start with initial guess for energy
distribution (light sources)

+ Update radiosity/power of all patches
based on the previous guess

/ N

new value
old values

* Repeat until converged

© Kavita Bala, Computer Science, Comell University

Jacobi

* For all patches i (i=1...N) : B{® = B,

» while not converged:
— for all patches i (i=1...N)

/

update of 1 patch requires evaluation of N FFs

© Kavita Bala, Computer Science, Comell University

Improved Gathering

» Jacobi iteration only uses values of
previous iterations to compute new values

» Gauss-Seidel iteration
— New values used immediately
— Slightly better convergence

© Kavita Bala, Computer Science, Cornell University

Gauss-Seidel

* For all patches i (i=1...N) : B{® =B

e,i

» while not converged:
— for all patches i (i=1...N)

© Kavita Bala, Computer Science, Cornell University

Example

© Kavita Bala, Computer Science, Cornell University

Progressive Radiosity

+ Gathering: O(n?)/iteration
— Still too slow

» Can use “shooting” as opposed to
“gathering” approach

* 1-2% of all emitting and reflecting surfaces
can account for very high percentage of
energy

©Kavita Bala, Computer Science, Comnell University

Southwell Iteration

» “Shooting” method

« Start with initial guess for light distribution
(light sources)

+ Select patch and distribute its energy over
all polygons

© Kavita Bala, Computer Science, Comell University

Southwell Iteration (Wrong)

» For all patches i (i=1..N) :
- B{®=Bq;

» while not converged:
— select shooting patch k with B, (@) = 0
— for all patches i (i=1..N)

with n FF evaluations, n patches are updated!

© Kavita Bala, Computer Science, Cornell University

Southwell Iteration

» Keep record of “unshot” radiosity/energy
per patch

» Repeat shooting of unshot energy until
converged

© Kavita Bala, Computer Science, Cornell University

Southwell Iteration (Correct)

* For all patches i (i=1..N) :
- B@ =B A B9 =B

» while not converged:
— select shooting patch k with A B, (@) = 0
— for all patches i (i=1..N)

- A Bk(g) =0
with n FF evaluations, n patches are updated!

© Kavita Bala, Computer Science, Cornell University

Progressive Radiosity

+ Solution time is fast: O(n) for first results

» Can monotonically approach the complete
diffuse radiosity solution

© Kavita Bala, Computer Science, Cornell University

Progressive Refinement

» Southwell selects shooting patches in no
particular order

* Progressive refinement radiosity selects
patch with largest unshot energy

« First image is generated fairly quickly!

©Kavita Bala, Computer Science, Comnell University

PR + Ambient term

* PR gives an estimate for each radiosity
value that is smaller than the real value

» Estimate can be improved by using
ambient term
— Add all unshot energy

— Distribute total unshot energy equally over all
patches

+ Solution has improved energy distribution

© Kavita Bala, Computer Science, Comell University

Gathering vs. Shooting

» Gathering
D‘/ Jacobi
t Gauss-Seidel
» Shooting
I:|< Southwell
N Progressive Radiosity

© Kavita Bala, Computer Science, Cornell University

Comparison

Gauss- Southwell
Seidel

Southwell Southwell
+ sorting +sorting

+ambient

© Kavita Bala, Computer Science, Cornell University

Radiosity Algorithm

Subdivide scene in polygons

— mesh that determines final solution
Compute Form Factors

— transfer of energy between polygons
Solve linear system

—results in power (color) per polygon
Pick a viewpoint and display

— Loop over different viewpoints

© Kavita Bala, Computer Science, Cornell University

