
1

Lecture 2: Radiosity

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Information

• Office Hours
– Wed: 2-3 Upson 5142

• Web-page
• www.cs.cornell.edu/courses/cs665/2004fa/

– Tentative schedule
– Homeworks, lecture notes, will be on-line
– Check for updates and announcements

2

© Kavita Bala, Computer Science, Cornell University

Classic Ray Tracing
• Image-based

• Gathering approach
– from the light sources (direct illumination)
– from the reflected direction (perfect specular)
– from the refracted direction (perfect specular)

• All other contributions are ignored!
– Not a complete solution

© Kavita Bala, Computer Science, Cornell University

Whitted RT Assumptions
• Light Source: point light source

– Hard shadows
– Single shadow ray direction

• Material: Blinn-Phong model
– Diffuse with specular peak

• Light Propagation
– Occluding objects
– Specular interreflections only

trace rays in mirror reflection direction only

3

© Kavita Bala, Computer Science, Cornell University

Other approaches
• Classic ray tracing:

– Only perfect specular and perfect
refraction/reflection

– View-dependent

• Radiosity (1984)
– Pure diffuse
– View-independent

• Monte Carlo Ray Tracing (1986)
– Global Illumination for any environment

© Kavita Bala, Computer Science, Cornell University

Radiosity Advantages

• Physically based approach for diffuse
environments

• Can model diffuse interactions, color
bleeding, indirect lighting and penumbra
(area light sources)

• Boundary element (finite element)
problem

• Accounts for very high percentage of total
energy transfer

4

© Kavita Bala, Computer Science, Cornell University

Key Idea #1: diffuse only

• Radiance independent of direction
• Surface looks the same from any

viewpoint
• No specular reflections

© Kavita Bala, Computer Science, Cornell University

Diffuse surfaces
• Diffuse emitter

L(x→Θ) = constant over Θ

• Diffuse reflector
Reflectivity constant

5

© Kavita Bala, Computer Science, Cornell University

Key Idea #2: “constant”polygons

• Radiosity solution is an approximation,
due to discretization of scene into
patches

• Subdivide scene into small polygons

© Kavita Bala, Computer Science, Cornell University

Constant radiance approximation

• Radiance is constant over a surface
element
L(x) = constant over x

• surface element i: L(x) = Li

6

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation

= +

Emitted radiosity = self-emitted radiosity + received & reflected radiosity

∑
=

→+=
N

j
jijiselfi RadiosityaRadiosityRadiosity

1
,

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation

• Radiosity equation for each polygon i

• N equations; N unknown variables

∑

∑

∑

=
→

=
→

=
→

+=

+=

+=

N

j
jNjNselfN

N

j
jjself

N

j
jjself

RadiosityaRadiosityRadiosity

RadiosityaRadiosityRadiosity

RadiosityaRadiosityRadiosity

1
,

1
22,2

1
11,1

L

7

© Kavita Bala, Computer Science, Cornell University

Radiosity algorithm
• Subdivide the scene into small polygons

• Compute for each polygon a constant
illumination value

• Choose a viewpoint, and display the visible
polygons

© Kavita Bala, Computer Science, Cornell University

Radiosity algorithm

• Subdivide the scene in small polygons
• Compute for each polygon a constant

illumination value
• Choose a viewpoint, and display the

visible polygons
• Choose a new viewpoint ….
• … and another ….
• … and another ….

8

© Kavita Bala, Computer Science, Cornell University

Radiosity: Typical Image

© Kavita Bala, Computer Science, Cornell University

Energy Conservation Equation

Φi

=

F(2→1)

Φ2

Φ3
Φ4

+

Φe,i

∑
=

→Φ+Φ=Φ
N

j
jiiei ijF

1
,)(ρ

F(3→1)

F(4→1)

9

© Kavita Bala, Computer Science, Cornell University

Compute Form Factors

∫ ∫ ⋅⋅⋅
⋅

⋅
=→

i jA A
xy

xy

yx

j

dAdAyxV
rA

ijF),(
coscos1)(2π

θθ

j

ix

y

θx rxy

θy

© Kavita Bala, Computer Science, Cornell University

Form Factors Invariant

∫ ∫ ⋅⋅⋅
⋅

⋅
=→

i jA A
xy

xy

yx

j

dAdAyxV
rA

ijF),(
coscos1)(2π

θθ

∫ ∫ ⋅⋅⋅
⋅

⋅
=→

j iA A
xy

xy

yx

i

dAdAyxV
rA

jiF),(
coscos1)(2π

θθ

ji AijFAjiF)()(→=→

10

© Kavita Bala, Computer Science, Cornell University

Radiosity Equation
• Radiosity for each polygon i

• Linear system
– Βi : radiosity of patch i (unknown)
– Βe,i : emission of patch i (known)
– ρI : reflectivity of patch i (known)
– F(i→j): form-factor (coefficients of matrix)

∑
=

→+=∀
N

j
jiiei jiFBBBi

1
,)(: ρ

© Kavita Bala, Computer Science, Cornell University

Linear System

=

−−−

−−−
−−−

→→→

→→→

→→→

ne

e

e

nnnnnnnn

n

n

B

B
B

B

B
B

FFF

FFF
FFF

,

2,

1,

2

1

21

22222122

11211111

......
1...

............
...1
...1

ρρρ

ρρρ
ρρρ

known known

unknown

11

© Kavita Bala, Computer Science, Cornell University

Linear System

1

2
3

4

=

−−−−

−−−−

−−−−

−−−−

4,

3,

2,

1,

4

3

2

1

4444

3333

2222

1111

1

1

1

1

e

e

e

e

B

B

B

B

B

B

B

B

ρρρρ

ρρρρ

ρρρρ

ρρρρ

© Kavita Bala, Computer Science, Cornell University

Radiosity Algorithm

• Subdivide scene in polygons
– mesh that determines final solution

• Compute Form Factors
– transfer of energy between polygons

• Solve linear system
– results in power (color) per polygon

• Pick a viewpoint and display
– loop

12

© Kavita Bala, Computer Science, Cornell University

Form Factor
• Fj→i = the fraction of power

emitted by j, which is
received by i

• Area
– if i is smaller, it receives

less power
• Orientation

– if i faces j, it receives
more power

• Distance
– if i is further away, it

receives less power

j

i

© Kavita Bala, Computer Science, Cornell University

Form Factors - how to compute?
• Closed Form

– Analytic

• Hemicube

• Monte-Carlo

13

© Kavita Bala, Computer Science, Cornell University

Form Factor – Analytical

∫ ∫ ⋅⋅⋅
⋅

⋅
=→

i jA A
xy

xy

yx

j

dAdAyxV
rA

ijF),(
coscos1)(2π

θθ

j

ix

y

θx rxy

θy • Equations for special
cases (polygons)

• In general hard problem
• Visibility makes it harder

© Kavita Bala, Computer Science, Cornell University

Form Factors - Hemicube

• Project patch on hemicube
• Add hemicube cells to compute form factor

14

© Kavita Bala, Computer Science, Cornell University

Form Factors - Hemicube
• Depth information per pixel evaluates visibility
• FFs for all polygons in scene
• Hardware rendering (Z-buffer)
• Severe aliasing: Small polygons “disappear”

© Kavita Bala, Computer Science, Cornell University

FF - Monte Carlo
• Generate point on patch i
• Generate point on patch j
• Evaluate integrand
• Compute average

∑
=

⋅
⋅⋅

⋅

⋅
=→

N

k
kk

yxkk

yx

j

yxV
ryxpAN

ijF
kk

kk

1
2),(

),(
coscos1)(
π
θθ

V(…,…) = 0

15

© Kavita Bala, Computer Science, Cornell University

Form Factors
• Visibility checks are most expensive

operation

• FFs are usually computed when needed
– computationally expensive
– memory O(N2)

© Kavita Bala, Computer Science, Cornell University

Radiosity Algorithm

• Subdivide scene in polygons
– mesh that determines final solution

• Compute Form Factors
– transfer of energy between polygons

• Solve linear system
– results in power (color) per polygon

• Pick a viewpoint and display
– loop

16

© Kavita Bala, Computer Science, Cornell University

How To Solve Linear System
• Matrix Inversion

• Gathering methods
– Jacobi iteration
– Gauss-Seidel

• Shooting
– Southwell iteration
– Improved Southwell iteration

© Kavita Bala, Computer Science, Cornell University

Matrix Inversion

−−−

−−−
−−−

=

−

→→→

→→→

→→→

ne

e

e

nnnnnnn

n

n

n B

B
B

FFF

FFF
FFF

B

B
B

,

2,

1,
1

21

22222122

11211111

2

1

...
1...

............
...1
...1

...
ρρρ

ρρρ
ρρρ

O(n3)

17

© Kavita Bala, Computer Science, Cornell University

Iterative approaches

• Jacobi iteration
• Start with initial guess for energy

distribution (light sources)
• Update radiosity/power of all patches

based on the previous guess

• Repeat until converged

new value old values

∑
=

→+=
N

j
jiiei jiFBBB

1
,)(ρ

18

© Kavita Bala, Computer Science, Cornell University

Jacobi
• For all patches i (i=1...N) : Βi

(0) = Βe,i

• while not converged:
– for all patches i (i=1...N)

)(
1

)1(
,

)(jiFBBB
N

j

g
jiie

g
i →+= ∑

=

−ρ

update of 1 patch requires evaluation of N FFs

© Kavita Bala, Computer Science, Cornell University

Improved Gathering

• Jacobi iteration only uses values of
previous iterations to compute new values

• Gauss-Seidel iteration
– New values used immediately
– Slightly better convergence

19

© Kavita Bala, Computer Science, Cornell University

Gauss-Seidel
• For all patches i (i=1...N) : Βi

(0) = Βe,i

• while not converged:
– for all patches i (i=1...N)

)()()1(
1

1

)(
,

)(jiFBjiFBBB
N

ij

g
ji

i

j

g
jiie

g
i →+→+= ∑∑

=

−
−

=

ρρ

© Kavita Bala, Computer Science, Cornell University

Example

20

© Kavita Bala, Computer Science, Cornell University

Progressive Radiosity
• Gathering: O(n2)/iteration

– Still too slow

• Can use “shooting” as opposed to
“gathering” approach

• 1-2% of all emitting and reflecting surfaces
can account for very high percentage of
energy

© Kavita Bala, Computer Science, Cornell University

Southwell Iteration
• “Shooting” method

• Start with initial guess for light distribution
(light sources)

• Select patch and distribute its energy over
all polygons

21

© Kavita Bala, Computer Science, Cornell University

• For all patches i (i=1..N) :
– Βi

(0) = Βe,i

• while not converged:
– select shooting patch k with Βk

(g-1) ≠ 0
– for all patches i (i=1..N)

Southwell Iteration (Wrong)

)()1()(kiFBB g
ki

g
i →=+ −ρ

with n FF evaluations, n patches are updated!

© Kavita Bala, Computer Science, Cornell University

Southwell Iteration
• Keep record of “unshot” radiosity/energy

per patch

• Repeat shooting of unshot energy until
converged

22

© Kavita Bala, Computer Science, Cornell University

• For all patches i (i=1..N) :
– Βi

(0) = Βe,i ∆ Βi
(0) = Βe,i

• while not converged:
– select shooting patch k with ∆ Βk

(g-1) ≠ 0
– for all patches i (i=1..N)

– ∆ Βk
(g) = 0

Southwell Iteration (Correct)

)(

)(
)1()(

)1()(

kiFBB
kiFBB

g
ki

g
i

g
ki

g
i

→∆=+∆

→∆=+
−

−

ρ

ρ

with n FF evaluations, n patches are updated!

© Kavita Bala, Computer Science, Cornell University

Progressive Radiosity
• Solution time is fast: O(n) for first results

• Can monotonically approach the complete
diffuse radiosity solution

23

© Kavita Bala, Computer Science, Cornell University

Progressive Refinement
• Southwell selects shooting patches in no

particular order

• Progressive refinement radiosity selects
patch with largest unshot energy

• First image is generated fairly quickly!

© Kavita Bala, Computer Science, Cornell University

PR + Ambient term
• PR gives an estimate for each radiosity

value that is smaller than the real value

• Estimate can be improved by using
ambient term
– Add all unshot energy
– Distribute total unshot energy equally over all

patches

• Solution has improved energy distribution

24

© Kavita Bala, Computer Science, Cornell University

Gathering vs. Shooting
• Gathering

• Shooting

Jacobi
Gauss-Seidel

Southwell
Progressive Radiosity

© Kavita Bala, Computer Science, Cornell University

Comparison

Gauss-
Seidel

Southwell

Southwell
+ sorting

Southwell
+sorting
+ambient

25

© Kavita Bala, Computer Science, Cornell University

Radiosity Algorithm

• Subdivide scene in polygons
– mesh that determines final solution

• Compute Form Factors
– transfer of energy between polygons

• Solve linear system
– results in power (color) per polygon

• Pick a viewpoint and display
– Loop over different viewpoints

