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Lecture 2: Radiosity

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Information

• Office Hours
– Wed: 2-3 Upson 5142

• Web-page
• www.cs.cornell.edu/courses/cs665/2004fa/

– Tentative schedule
– Homeworks, lecture notes, will be on-line
– Check for updates and announcements
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Classic Ray Tracing
• Image-based

• Gathering approach
– from the light sources (direct illumination)
– from the reflected direction (perfect specular)
– from the refracted direction (perfect specular)

• All other contributions are ignored!
– Not a complete solution 
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Whitted RT Assumptions
• Light Source: point light source

– Hard shadows
– Single shadow ray direction

• Material: Blinn-Phong model
– Diffuse with specular peak

• Light Propagation
– Occluding objects
– Specular interreflections only 

trace rays in mirror reflection direction only
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Other approaches
• Classic ray tracing:

– Only perfect specular and perfect 
refraction/reflection 

– View-dependent

• Radiosity (1984)
– Pure diffuse
– View-independent

• Monte Carlo Ray Tracing (1986)
– Global Illumination for any environment
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Radiosity Advantages

• Physically based approach for diffuse 
environments

• Can model diffuse interactions, color 
bleeding, indirect lighting and penumbra 
(area light sources)

• Boundary element (finite element) 
problem

• Accounts for very high percentage of total 
energy transfer
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Key Idea #1: diffuse only

• Radiance independent of direction
• Surface looks the same from any 

viewpoint
• No specular reflections
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Diffuse surfaces
• Diffuse emitter

L(x→Θ) = constant over Θ

• Diffuse reflector
Reflectivity constant
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Key Idea #2: “constant”polygons

• Radiosity solution is an approximation, 
due to discretization of scene into 
patches

• Subdivide scene into small polygons
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Constant radiance approximation

• Radiance is constant over a surface 
element
L(x) = constant over x

• surface element i: L(x) = Li
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Radiosity Equation
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Radiosity Equation

• Radiosity equation for each polygon i

• N equations; N unknown variables
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Radiosity algorithm
• Subdivide the scene into small polygons

• Compute for each polygon a constant 
illumination value

• Choose a viewpoint, and display the visible 
polygons
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Radiosity algorithm

• Subdivide the scene in small polygons
• Compute for each polygon a constant 

illumination value
• Choose a viewpoint, and display the 

visible polygons
• Choose a new viewpoint ….
• … and another ….
• … and another ….
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Radiosity: Typical Image
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Energy Conservation Equation

Φi
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Compute Form Factors
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Form Factors Invariant
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Radiosity Equation
• Radiosity for each polygon i

• Linear system
– Βi      : radiosity of patch i (unknown)
– Βe,i   : emission of patch i (known)
– ρI         : reflectivity of patch i (known)
– F(i→j): form-factor (coefficients of matrix)
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Linear System
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Linear System

1

2
3

4





























=



























































−−−−

−−−−

−−−−

−−−−

4,

3,

2,

1,

4

3

2

1

4444

3333

2222

1111

1

1

1

1

e

e

e

e

B

B

B

B

B

B

B

B

ρρρρ

ρρρρ

ρρρρ

ρρρρ

© Kavita Bala, Computer Science, Cornell University

Radiosity Algorithm

• Subdivide scene in polygons
– mesh that determines final solution

• Compute Form Factors
– transfer of energy between polygons

• Solve linear system
– results in power (color) per polygon

• Pick a viewpoint and display
– loop
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Form Factor
• Fj→i = the fraction of power 

emitted by j, which is 
received by i 

• Area
– if i is smaller, it receives 

less power
• Orientation

– if i faces j, it receives 
more power

• Distance
– if i is further away, it 

receives less power

j

i
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Form Factors - how to compute?
• Closed Form

– Analytic

• Hemicube

• Monte-Carlo
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Form Factor – Analytical
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• In general hard problem
• Visibility makes it harder
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Form Factors - Hemicube

• Project patch on hemicube
• Add hemicube cells to compute form factor
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Form Factors - Hemicube
• Depth information per pixel evaluates visibility
• FFs for all polygons in scene
• Hardware rendering (Z-buffer)
• Severe aliasing: Small polygons “disappear”
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FF - Monte Carlo
• Generate point on patch i
• Generate point on patch j
• Evaluate integrand
• Compute average
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Form Factors
• Visibility checks are most expensive 

operation 

• FFs are usually computed when needed
– computationally expensive
– memory O(N2)
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Radiosity Algorithm

• Subdivide scene in polygons
– mesh that determines final solution

• Compute Form Factors
– transfer of energy between polygons

• Solve linear system
– results in power (color) per polygon

• Pick a viewpoint and display
– loop
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How To Solve Linear System
• Matrix Inversion 

• Gathering methods
– Jacobi iteration
– Gauss-Seidel

• Shooting
– Southwell iteration
– Improved Southwell iteration
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Matrix Inversion
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Iterative approaches

• Jacobi iteration
• Start with initial guess for energy 

distribution (light sources)
• Update radiosity/power of all patches 

based on the previous guess

• Repeat until converged

new value old values
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Jacobi
• For all patches i (i=1...N) : Βi

(0) = Βe,i

• while not converged:
– for all patches i (i=1...N) 
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update of 1 patch requires evaluation of N FFs
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Improved Gathering

• Jacobi iteration only uses values of 
previous iterations to compute new values

• Gauss-Seidel iteration
– New values used immediately
– Slightly better convergence
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Gauss-Seidel
• For all patches i (i=1...N) : Βi

(0) = Βe,i

• while not converged:
– for all patches i (i=1...N) 
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Example
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Progressive Radiosity
• Gathering: O(n2)/iteration

– Still too slow

• Can use “shooting” as opposed to 
“gathering” approach

• 1-2% of all emitting and reflecting surfaces 
can account for very high percentage of 
energy
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Southwell Iteration
• “Shooting” method

• Start with initial guess for light distribution 
(light sources)

• Select patch and distribute its energy over 
all polygons
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• For all patches i (i=1..N) :
– Βi

(0) = Βe,i

• while not converged:
– select shooting patch k with Βk

(g-1) ≠ 0
– for all patches i (i=1..N) 

Southwell Iteration (Wrong)
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with n FF evaluations, n patches are updated!
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Southwell Iteration
• Keep record of “unshot” radiosity/energy 

per patch

• Repeat shooting of unshot energy until 
converged
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• For all patches i (i=1..N) :
– Βi

(0) = Βe,i ∆ Βi
(0) = Βe,i

• while not converged:
– select shooting patch k with  ∆ Βk

(g-1) ≠ 0
– for all patches i (i=1..N) 

– ∆ Βk
(g) = 0

Southwell Iteration (Correct)
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with n FF evaluations, n patches are updated!
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Progressive Radiosity
• Solution time is fast: O(n) for first results

• Can monotonically approach the complete 
diffuse radiosity solution 
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Progressive Refinement
• Southwell selects shooting patches in no 

particular order

• Progressive refinement radiosity selects 
patch with largest unshot energy

• First image is generated fairly quickly!
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PR + Ambient term
• PR gives an estimate for each radiosity 

value that is smaller than the real value

• Estimate can be improved by using 
ambient term
– Add all unshot energy
– Distribute total unshot energy equally over all 

patches

• Solution has improved energy distribution



24

© Kavita Bala, Computer Science, Cornell University

Gathering vs. Shooting
• Gathering

• Shooting

Jacobi
Gauss-Seidel

Southwell
Progressive Radiosity
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Comparison

Gauss-
Seidel

Southwell

Southwell
+ sorting

Southwell
+sorting
+ambient
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Radiosity Algorithm

• Subdivide scene in polygons
– mesh that determines final solution

• Compute Form Factors
– transfer of energy between polygons

• Solve linear system
– results in power (color) per polygon

• Pick a viewpoint and display
– Loop over different viewpoints


