
1

Lecture 21: Point-based
Rendering

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• In-class exam next week Nov 18th.

• Regrade requests in writing
– Will regrade whole assignment

© Kavita Bala, Computer Science, Cornell University

Complexity
• Lighting: many lights, environment maps

– Global illumination, shadows

• Materials: BRDFs, textures

• Geometry: Level-of-detail, point-based
representations

• All: impostors, image-based rendering

© Kavita Bala, Computer Science, Cornell University

Motivation
• Scene complexity is

increasing

• Scanning is producing
large point datasets

• Procedural model
generation (trees, plants)

© Kavita Bala, Computer Science, Cornell University

Motivation
• Creating meshes from scanned datasets

– Hard
– Not robust

• Projected triangles too small
– Many triangles per pixel
– Setup and rasterization useless

© Kavita Bala, Computer Science, Cornell University

Insight
• Use points as a rendering primitive

• Avoid creating meshes
– Connectivity information
– More robust
– Compact
– Matches data sets better…

2

© Kavita Bala, Computer Science, Cornell University

Point-Based Representation
• Point cloud represents

– 3D geometry of surface
– Surface reflectance

Diffuse, color

• No connectivity
• No texture information

© Kavita Bala, Computer Science, Cornell University

Rendering Pipeline

© Kavita Bala, Computer Science, Cornell University

Rendering points
• Map a point to image plane

• What do we do with holes?

• Filter kernels (Gaussian)
– Merge nearby points to reconstruct pixel

© Kavita Bala, Computer Science, Cornell University

Surface Splatting
• Surface samples are specified in local

reference frame with respect to normal
– Sphere or disk representation

© Kavita Bala, Computer Science, Cornell University

Splat on image plane
• Warp to image space

– 2D to 2D projective mapping

© Kavita Bala, Computer Science, Cornell University

3

© Kavita Bala, Computer Science, Cornell University

Combining multiple points

• Weighted sum of kernels in image space
– Normalize weights of kernels

© Kavita Bala, Computer Science, Cornell University

Algorithm
• For each point

– Shade point
– Splat = projected reconstruction filter kernel
– Rasterize and accumulate splat

• For each output pixel
– normalize

© Kavita Bala, Computer Science, Cornell University

Z-buffer

© Kavita Bala, Computer Science, Cornell University

3-pass GPU Algorithm
• Pass 1: Depth image with depth offset epsilon

away from viewpoint
– Do z-buffer tests

• Pass 2: Draw colored splats with additive
blending. Accumulate
– Colors of visible splats in color channels
– Visible footprint in alpha channels

• 3rd pass: Normalize color channels (divide by
alpha channel)

© Kavita Bala, Computer Science, Cornell University

Results
• Scanned head: 429k points
• Matterhorn: 4,787k points
• On GPUs: 3M points/sec

© Kavita Bala, Computer Science, Cornell University

LODs with points
• Hierarchical data structure
• Q-splat [SIGGRAPH 2000]

4

© Kavita Bala, Computer Science, Cornell University

Construction
• Each vertex of original mesh is leaf sphere

(such that adjacent vertices overlap)

• Construct top down

• Store sphere center, radius, normal
– All quantized for compactness

© Kavita Bala, Computer Science, Cornell University

Hierarchical Traversal

© Kavita Bala, Computer Science, Cornell University © Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Results

130k splats, 132 ms 1M splats, 722 ms

© Kavita Bala, Computer Science, Cornell University

Other point-based work
• Anti-aliasing of points/textures

• Hybrid rendering: polygons and points

• Point editing and animation

• Expensive shading with points: open
question

5

© Kavita Bala, Computer Science, Cornell University

Complexity
• Lighting: many lights, environment maps

– Global illumination, shadows

• Materials: BRDFs, textures

• Geometry: Level-of-detail, point-based
representations

• All: image-based rendering

© Kavita Bala, Computer Science, Cornell University

Scene Complexity

© Kavita Bala, Computer Science, Cornell University

+

+

=

=

Computer Graphics

Geometry Camera ImageMaterial
(BRDF) Lights+

+

+

+

© Kavita Bala, Computer Science, Cornell University

Why is image generation slow?

• Requires labor-intensive modeling:
geometry and BRDF
– Hard
– Tedious
– Error-prone

• Rendering time long
– Global illumination
– Proportional to complexity

© Kavita Bala, Computer Science, Cornell University

One Approach: Texture Mapping

• Use textures to create the effect of
complex geometry and lighting conditions
– displacement mapping

change position of surface
– bump mapping

change normal
– reflection/environment mapping

© Kavita Bala, Computer Science, Cornell University

Bump Mapping

6

© Kavita Bala, Computer Science, Cornell University

Reflection Mapping

(Terminator II - 1991)

© Kavita Bala, Computer Science, Cornell University

Texture Mapping not enough!
• How do we create textures?

– Model BRDFs and colors

• To what geometry should we apply
textures? How?
– Model geometry
– But, simple models

flat textures, don’t look good
– Complex models

time consuming, tedious, hard to map

© Kavita Bala, Computer Science, Cornell University

Idea

• Can we use photographs?

• Photographs capture
• High geometric complexity
• High lighting and material (BRDF) complexity

• How do we use them?

© Kavita Bala, Computer Science, Cornell University

GeometryCameras
+

+

=

=

Machine Vision

Lights
+

+

+

+

• Given images, find geometry of scene
• Problem: very hard inverse problem

– too many unknowns

Image Material
(BRDF)

© Kavita Bala, Computer Science, Cornell University

Image-based Approaches

• Combine vision and graphics
• Given images and some geometry

– Render new images from existing images
– New idea: Image is input and rendering primitive
– No (or very little) geometry recovery

Images Images
Analyze

And
Reproject

Analyze Geometry Simulate

© Kavita Bala, Computer Science, Cornell University

Pros

• Promising approach to handle complexity
• Benefits:

– No labor-intensive modeling
– Captures high geometric/material

complexity
– Rendering time constant: proportional to

image size, independent of scene
complexity

7

© Kavita Bala, Computer Science, Cornell University

Outline

• Theory

• Image-based Rendering

• Image-based Modeling
– Façade

© Kavita Bala, Computer Science, Cornell University

The Plenoptic Function

• P(x, y, z, θ, ϕ): radiance over all points in
space and in all directions
– 5D function: theoretical concept

• Why do we care? Rendering computes P

(x, y, z)

(θ, ϕ)

© Kavita Bala, Computer Science, Cornell University

Plenoptic function

• Radiance value for all possible rays = P

© Kavita Bala, Computer Science, Cornell University

Images are subset of P

• Think of an image in a new way!!!
• Image = radiance for each ray in image

= radiance through a collection of rays
= subset of plenoptic function P

• 1 Input image = subset of P
• Several input images approximate P
• All possible images = P

© Kavita Bala, Computer Science, Cornell University

IBR idea
• Idea: Replace scene by images

• Output: new viewpoint
– Look up plenoptic fn. look up input images

• What are the assumptions?

– Static scene

– Fixed lighting

– Existing scene

© Kavita Bala, Computer Science, Cornell University

Approaches
• Systems that have no depth

– Quicktime VR
– Plenoptic Modeling
– Lightfields/Lumigraphs
– Image-based visual hulls

• Systems that have full geometry
– Surface Lightfields

• Systems that have partial geometry: Image-
Based Modeling
– Façade

8

© Kavita Bala, Computer Science, Cornell University

QuickTime VR
• Fixed viewpoint + full range of viewing

directions (3600)
• Panoramic images:

– Stitch image to form panorama
– Can look around panorama

© Kavita Bala, Computer Science, Cornell University

Quicktime VR

• Demo

• Pros
– Simple, fast, effective

• Cons
– Camera position is confined to predefined

observer positions
– Distortion when user deviates from position

