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Lecture 21: Point-based 
Rendering

Fall 2004
Kavita Bala

Computer Science
Cornell University
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Announcements
• In-class exam next week Nov 18th.

• Regrade requests in writing
– Will regrade whole assignment

© Kavita Bala, Computer Science, Cornell University

Complexity
• Lighting: many lights, environment maps

– Global illumination, shadows

• Materials: BRDFs, textures

• Geometry: Level-of-detail, point-based 
representations

• All: impostors, image-based rendering
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Motivation
• Scene complexity is 

increasing

• Scanning is producing 
large point datasets

• Procedural model 
generation (trees, plants)
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Motivation
• Creating meshes from scanned datasets

– Hard
– Not robust

• Projected triangles too small
– Many triangles per pixel
– Setup and rasterization useless
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Insight
• Use points as a rendering primitive

• Avoid creating meshes
– Connectivity information
– More robust
– Compact
– Matches data sets better…
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Point-Based Representation
• Point cloud represents

– 3D geometry of surface
– Surface reflectance

Diffuse, color

• No connectivity
• No texture information
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Rendering Pipeline
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Rendering points
• Map a point to image plane

• What do we do with holes?

• Filter kernels (Gaussian)
– Merge nearby points to reconstruct pixel
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Surface Splatting
• Surface samples are specified in local 

reference frame with respect to normal
– Sphere or disk representation
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Splat on image plane
• Warp to image space

– 2D to 2D projective mapping
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Combining multiple points

• Weighted sum of kernels in image space
– Normalize weights of kernels
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Algorithm
• For each point

– Shade point
– Splat = projected reconstruction filter kernel
– Rasterize and accumulate splat

• For each output pixel
– normalize
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Z-buffer
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3-pass GPU Algorithm
• Pass 1: Depth image with depth offset epsilon 

away from viewpoint
– Do z-buffer tests

• Pass 2: Draw colored splats with additive 
blending. Accumulate
– Colors of visible splats in color channels
– Visible footprint in alpha channels

• 3rd pass: Normalize color channels (divide by 
alpha channel)
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Results
• Scanned head: 429k points
• Matterhorn: 4,787k points
• On GPUs: 3M points/sec
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LODs with points
• Hierarchical data structure
• Q-splat [SIGGRAPH 2000]
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Construction
• Each vertex of original mesh is leaf sphere 

(such that adjacent vertices overlap)

• Construct top down

• Store sphere center, radius, normal
– All quantized for compactness
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Hierarchical Traversal
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Results

130k splats, 132 ms 1M splats, 722 ms
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Other point-based work
• Anti-aliasing of points/textures 

• Hybrid rendering: polygons and points

• Point editing and animation

• Expensive shading with points: open 
question
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Complexity
• Lighting: many lights, environment maps

– Global illumination, shadows

• Materials: BRDFs, textures

• Geometry: Level-of-detail, point-based 
representations

• All: image-based rendering
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Scene Complexity
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Why is image generation slow?

• Requires labor-intensive modeling: 
geometry and BRDF 
– Hard
– Tedious
– Error-prone

• Rendering time long
– Global illumination
– Proportional to complexity
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One Approach: Texture Mapping

• Use textures to create the effect of 
complex geometry and lighting conditions
– displacement mapping

change position of surface
– bump mapping

change normal
– reflection/environment mapping
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Bump Mapping
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Reflection Mapping

(Terminator II - 1991)
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Texture Mapping not enough!
• How do we create textures?

– Model BRDFs and colors

• To what geometry should we apply 
textures? How?
– Model geometry
– But, simple models

flat textures, don’t look good
– Complex models

time consuming, tedious, hard to map
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Idea

• Can we use photographs?

• Photographs capture
• High geometric complexity
• High lighting and material (BRDF) complexity

• How do we use them?

© Kavita Bala, Computer Science, Cornell University

GeometryCameras
+

+

=

=

Machine Vision

Lights
+

+

+

+

• Given images, find geometry of scene
• Problem: very hard inverse problem 

– too many unknowns

Image Material
(BRDF)
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Image-based Approaches

• Combine vision and graphics 
• Given images and some geometry

– Render new images from existing images
– New idea: Image is input and rendering primitive
– No (or very little) geometry recovery

Images Images
Analyze 

And
Reproject

Analyze Geometry Simulate
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Pros

• Promising approach to handle complexity
• Benefits:

– No labor-intensive modeling
– Captures high geometric/material 

complexity
– Rendering time constant: proportional to 

image size, independent of scene 
complexity
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Outline

• Theory

• Image-based Rendering

• Image-based Modeling
– Façade
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The Plenoptic Function

• P(x, y, z, θ, ϕ): radiance over all points in 
space and in all directions
– 5D function: theoretical concept 

• Why do we care? Rendering computes P

(x, y, z) 

(θ, ϕ)
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Plenoptic function

• Radiance value for all possible rays = P
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Images are subset of P

• Think of an image in a new way!!!
• Image = radiance for each ray in image              

= radiance through a collection of rays
= subset of plenoptic function P

• 1 Input image = subset of P 
• Several input images approximate P
• All possible images = P 
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IBR idea
• Idea: Replace scene by images

• Output: new viewpoint
– Look up plenoptic fn.         look up input images

• What are the assumptions?

– Static scene

– Fixed lighting

– Existing scene

© Kavita Bala, Computer Science, Cornell University

Approaches
• Systems that have no depth

– Quicktime VR
– Plenoptic Modeling
– Lightfields/Lumigraphs
– Image-based visual hulls

• Systems that have full geometry
– Surface Lightfields

• Systems that have partial geometry: Image-
Based Modeling
– Façade
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QuickTime VR
• Fixed viewpoint + full range of viewing 

directions (3600)
• Panoramic images: 

– Stitch image to form panorama
– Can look around panorama
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Quicktime VR

• Demo

• Pros
– Simple, fast, effective

• Cons
– Camera position is confined to predefined 

observer positions
– Distortion when user deviates from position


