
1

Lecture 20: LODs

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Research on many lights
• Ward ‘91

• Shirley, Wang, Zimmerman ‘94

• Fernandez, Bala, Greenberg ‘02

• Wald and Slusallek ’03

• Environment Map Sampling…

© Kavita Bala, Computer Science, Cornell University

Rendering w/ Environment Maps
• High lighting complexity

• Rich: captures real world

© Kavita Bala, Computer Science, Cornell University

High-Dynamic Range Imagery
• Multiple Exposures

© Kavita Bala, Computer Science, Cornell University © Kavita Bala, Computer Science, Cornell University

Sampling Environment Maps
• Say we have a fixed budget of samples

– Say 300 or 3000

• Goal: sample environment maps
• Basic idea: sample according to …

– Illumination importance sampling: over-
samples small bright lights

– Area-based stratified sampling: distribute
samples over area (under-samples bright
lights)

baL ω∆

2

© Kavita Bala, Computer Science, Cornell University

New Metric

• Instead 4
1

ω∆L

© Kavita Bala, Computer Science, Cornell University

Hierarchical Threshold
• Create regions from to

• Distribute samples in region according to
metric

• Distribute samples in each region
according to Hochbaum-Shmoys
– Minimize maximum distance

σi σ)1(+i

map

j
j Metric

Metric
NN =

© Kavita Bala, Computer Science, Cornell University © Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Summary
• Rendering with many lights remains an

open problem
– Techniques are linear in number of lights
– Hard to handle visibility

• Some interesting new approaches needed
for interactive rendering with many lights

© Kavita Bala, Computer Science, Cornell University

Complexity
• Lighting: many lights, environment maps

– Global illumination, shadows

• Materials: BRDFs, textures

• Geometry: Level-of-detail, point-based
representations

• All: impostors, image-based rendering

3

© Kavita Bala, Computer Science, Cornell University

LOD
• What is Level of detail used for?

• When close, want detail

• When far, want approximation

• Level of Detail (LOD) techniques draw
models at different resolutions depending
on their relevance to the viewer

© Kavita Bala, Computer Science, Cornell University

LOD Models (I)

© Kavita Bala, Computer Science, Cornell University

LOD Models (II)

© Kavita Bala, Computer Science, Cornell University

LOD Models (3)
• Effect of LOD less obvious if smooth shaded
• Note also that shading changes with LOD

© Kavita Bala, Computer Science, Cornell University

Standard LOD
• Used in games

– Finite set of models
– Hand generated
– Or using automatic decimation/simplification

• Use of LODs: based on distance from eye
or projected screen size

© Kavita Bala, Computer Science, Cornell University

Issues with LODs
• LOD Creation

• LOD Selection: Choosing which model to
display

• LOD Switching: Artifact-free switching
between LODs

4

© Kavita Bala, Computer Science, Cornell University

Selecting LOD Models
• For any given frame, decide what resolution to

display

• Option 1: Choose each object’s resolution
independently
– For example, use projected area or distance
– The current standard practice: fast, simple
– Potential problem: total # polygons may be large

• Option 2: Fix number of polygons and choose
models to fit in budget
– Ensures near constant frame rate, but harder to

implement

© Kavita Bala, Computer Science, Cornell University

LOD Switching
• Popping when models switched
• Popping is visually disturbing

– Why?
– Flickering when at threshold

• Solutions:
– Have more resolutions in hierarchy
– Blend two resolutions

Image blend: draw both resolutions
Geometry blend: morph between resolutions

© Kavita Bala, Computer Science, Cornell University

Creating the LOD
• Convert high resolution base mesh to

hierarchy of lower resolution meshes

• Desirable properties:
– Fast (although not real-time)
– Generates “good” approximations in some

sense
– Handles a wide variety of input meshes
– Allows for geometric blending

© Kavita Bala, Computer Science, Cornell University

Vertex Clustering
• Spatial partition
• Merge all vertices in a cell
• Fast but not good quality

© Kavita Bala, Computer Science, Cornell University

Vertex Decimation
• Starting with original model, iteratively

– rank vertices according to importance
– Remove unimportant vertex, retriangulate
– a fairly common technique

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

© Kavita Bala, Computer Science, Cornell University

Iterative Edge Contraction
• Contraction can operate on any set of vertices

– edges (or vertex pairs) are most common

• Starting with the original model, iteratively
– rank all edges with some cost metric
– contract minimum cost edge
– update edge costs

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

5

© Kavita Bala, Computer Science, Cornell University

Edge Contraction
• Single edge contraction (v1,v2) → v’ is performed

by
– moving v1 and v2 to position v’
– replacing all occurrences of v2 with v1
– removing v2 and all degenerate triangles

v1

v2 v’

Slide courtesy Michael Garland, http://graphics.cs.uiuc.edu/~garland

© Kavita Bala, Computer Science, Cornell University

Operations to Algorithms
• One operation doesn’t reduce a mesh!

• Use greedy algorithm: iterative edge contractions
– Rank each possible edge contraction
– Contract edge that introduces the least error
– Repeat until done

• Does NOT produce optimal meshes
– An optimal mesh has lowest error
– But optimal mesh computation is intractable (NP-hard)

© Kavita Bala, Computer Science, Cornell University

Summary
• LODs used extensively in interactive

applications

• Other work
– Progressive meshes

• But, can handle only single objects

• What about trees?

