# CS 665 Advanced Interactive Rendering

Fall 2004
Kavita Bala
Computer Science
Cornell University

#### Information

- Instructor: Kavita Bala kb@cs.cornell.edu
- AA: Cindy Robinson cindy@cs.cornell.edu
- Tue and Thu 10:10-11:25
  - Moving location Rhodes 484
  - Instead of Phillips 219

#### What is this course about

- What does image generation mean?
  - Physics of light
- How to generate images?
  - Global illumination algorithms



- How do we do this efficiently?
  - Interactive rendering, data structures, imagebased rendering etc.

© Kavita Bala, Computer Science, Cornell University

# Physics of light

What is light?

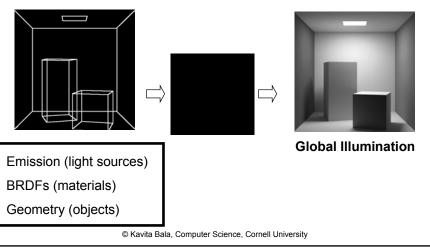


- How does it behave?
  - Does it bend?
- What effects are visible due to different behaviors of light?
  - Polarization, interference, ...
- Radiometry

### **Materials**

How does light interact with materials?




© Kavita Bala, Computer Science, Cornell University

# How do we generate images?

- How does light propagate in 3D?
- Rendering Equation: mathematical formulation of global illumination problem

#### Global Illumination

- GI algorithms solve the rendering equation
- Generate 2D image from 3D scene



## Global Illumination

- Ray tracing (Whitted)
- Radiosity (Finite Element)
- Monte Carlo rendering

# Classic Ray Tracing

- Introduced in 1980 by Turner Whitted
- First global illumination algorithm
- Many advances through the 80s
- Widely available in commercial and publicdomain software
  - Rayshade, Radiance

© Kavita Bala, Computer Science, Cornell University

# Ray tracing



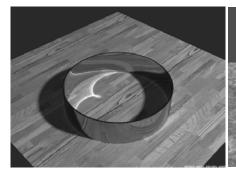
# Classic Radiosity

- Introduced in 1984
- · Diffuse inter-reflections
- Widely available
  - Lightscape

© Kavita Bala, Computer Science, Cornell University

# Radiosity Pictures






#### **Advanced Global Illumination**

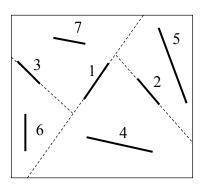
- Classic ray tracing and classic radiosity are basic building blocks
- More realistic materials than just perfect specular / diffuse
- · We want accurate solutions

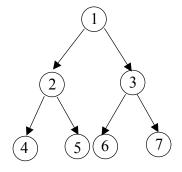
© Kavita Bala, Computer Science, Cornell University

#### **Global Solutions**



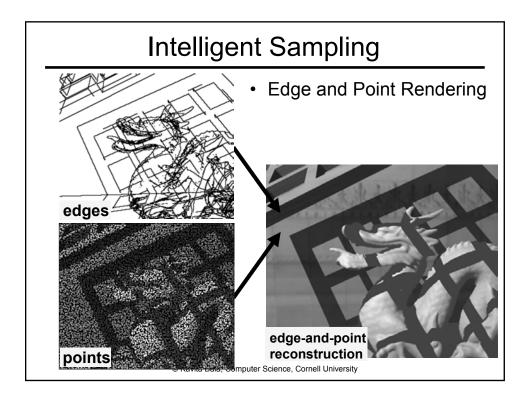



# Complexity


- · How do we handle complexity?
  - Many objects
  - Many lights
  - Complex BRDFs
  - Global illumination
  - Dynamic scenes

© Kavita Bala, Computer Science, Cornell University

#### **Acceleration Structures**


 Octrees, kd-trees, bounding volume hierarchies, BSP trees





# Fast Rendering



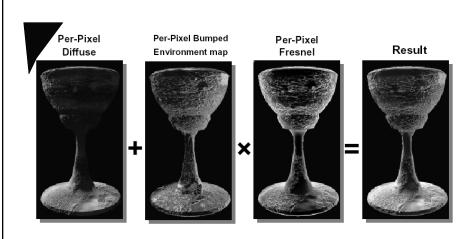


# **Dynamic Scenes**








b) After changes




c) Higher resolution

© Kavita Bala, Computer Science, Cornell University

# Hardware Rendering



# **Shadows**



Fernando, Fernandez, Bala, Greenberg [SIG01]

© Kavita Bala, Computer Science, Cornell University

## **Shadows**

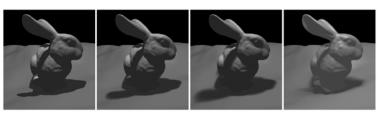
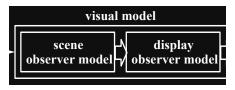



Figure 7: Comparison of the Stanford Bunny with shadow maps (left), penumbra maps with two different sized lights (center), and a pathtraced shadow using the larger light (right). For this data set, we generate shadows using a 10k polygon model and render the shadows onto the full (~70k polygon) model.




Figure 8: Using a standard shadow map results in hard shadows (left), add a penumbra map to get soft shadows (right). Using a 10k polygon dragon model for the shadows and a 50k polygon model to render, we get 14.5 fps at 1024x1024.

## Display the image ...

- GI computes radiance. How to display radiance to user?
- How to transform radiometric units to RGB screen values?
- Model the Human Visual System (HVS)

© Kavita Bala, Computer Science, Cornell University

# Realistic image display



tone reproduction operator

• The tone reproduction problem

# Modeling visual adaptation

10,000:1 dynamic range



before linear mapping

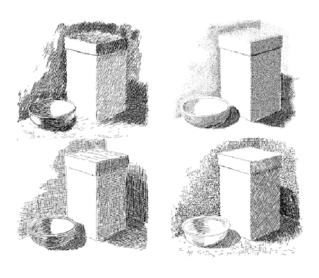
after visual mapping

© Kavita Bala, Computer Science, Cornell University

# Perceptually-based rendering

Understanding the human visual system to decide what is important to render




Stuart Little, Dreamworks, 1999 © Kavita Bala, Computer Science, Cornell University

# Complexity

- How do we handle complexity?
  - Many objects
  - Many lights
  - Complex BRDFs
  - Global illumination
  - Dynamic scenes

© Kavita Bala, Computer Science, Cornell University

## **NPR**



## Image-Based Rendering

Use photographs to capture complex scenes











© Kavita Bala, Computer Science, Cornell University

# By the end of the course...

Fundamental understanding of:

- Algorithms for generating images
  - Photorealistic and NPR
- Efficient techniques for high-quality rendering

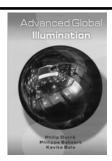
## Pre-requisites

- · An introductory graphics course
- Talk to me if you have not taken the Cornell introductory courses

© Kavita Bala, Computer Science, Cornell University

#### Administration

- 3-4 assignments
  - Written exercises
  - Programming assignments
- Final project
  - Groups?
- Focus on understanding concepts
- 1 mid-term


# **Academic Integrity**

- Can work in groups
- Don't copy from Web

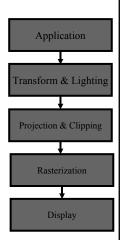
© Kavita Bala, Computer Science, Cornell University

#### **Books**

- Advanced Global Illumination Dutre, Bekaert, Bala
  - Rendering
  - Monte Carlo techniques
  - Current areas



## Information


- www.cs.cornell.edu/courses/cs665/2004fa/
  - Tentative schedule
  - Homeworks, lecture notes, will be on-line
  - Check for updates and announcements

© Kavita Bala, Computer Science, Cornell University

### Questions?

## **Traditional Graphics Pipeline**

- Modeling Transformation
  - World space transformations
- Lighting
  - Local shading model
- Rasterize pixels
- Interpolate color/depth/etc.
- Z-buffer for hidden surface elimination



© Kavita Bala, Computer Science, Cornell University

## **Shading Model**

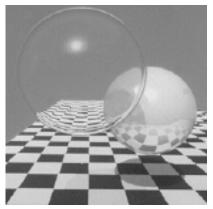
$$I(x,y) = \sum_{i=1}^{Nlights} (k_d(N.L) + k_s(N.H)^n) V_i + I_a$$
 diffuse specular ambient

- · Illumination at surface equals
  - Ambient +Diffuse +Specular highlights
- With programmable GPUs
  - Can have arbitrary shading model

#### But what about other cues?

- · Lighting: Shadows
- · Lighting: Shading
  - Glossy
  - Transparency
- Color bleeding




© Kavita Bala, Computer Science, Cornell University

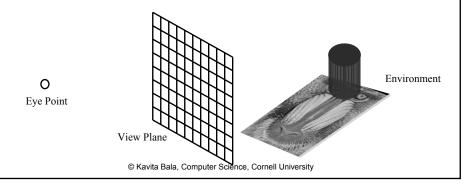
# Classic Ray Tracing

- Introduced in 1980 by Turner Whitted
- Existing rendering:
  - Phong shading
  - Local illumination (specular, diffuse)

# Insights

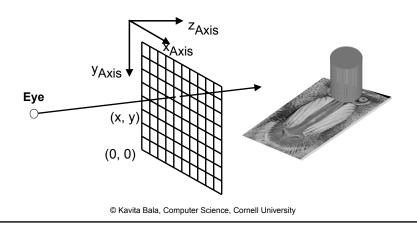
- Trace rays from eye into scene
  - Backward ray tracing
- · Find visible objects
- Shade visible points
  - Shadows
  - Reflections
  - Refractions




Whitted 1980: First ray traced image

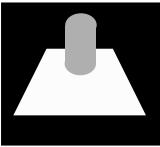
First global illumination algorithm!

© Kavita Bala, Computer Science, Cornell University


### Basic Algorithm - View Setup

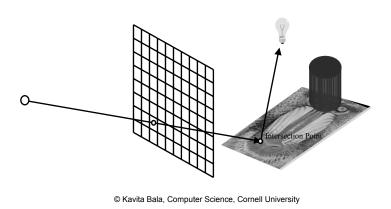
- Synthetic camera defined by "eye point" and "view plane" in world coordinates
- View plane divided into pixels corresponding to the image dimensions




# Basic Algorithm - View Rays

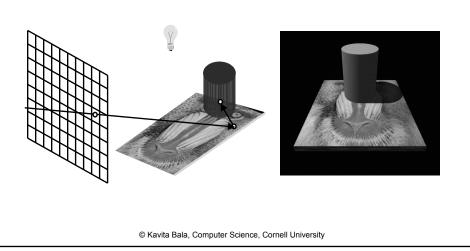
 Rays are cast from the eye point through each pixel in the image




# Visibility Determination

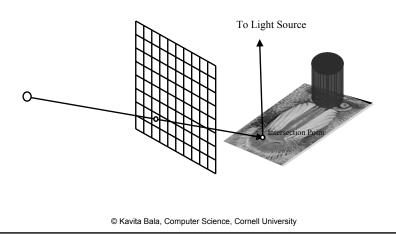
- Intersect eye ray with all objects in scene
  - Find closest object
  - Z-buffer was existing algorithm
- No intersection? Show background color




# Basic Algorithm - Shadows

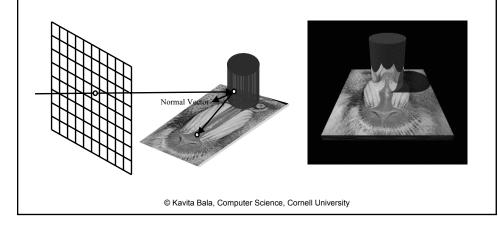
 Cast ray from the surface point to each light source: shadow rays




### Basic Algorithm - Shadows, cont.

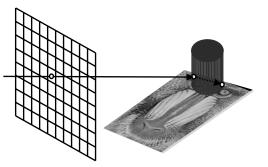
Shadow ray is blocked = shadow

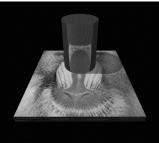



# Basic Algorithm - Shadow Rays

 If shadow ray not blocked, calculate radiance based on shading model




# Basic Algorithm - Reflections


If object specular, shoot secondary reflected rays



### Basic Algorithm - Refractions

If object transparent, shoot secondary refracted rays





© Kavita Bala, Computer Science, Cornell University

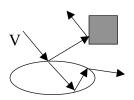
# Whitted RT Shading Model

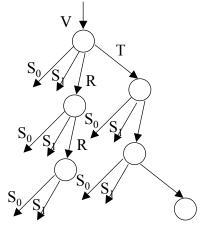
$$\begin{split} I(x,y) = \sum_{i=1}^{Nlights} (k_d(N.L) + k_s(N.H)^n) V_i &+ \\ & \text{diffuse specular} \\ I_a &+ k_s I_r &+ k_t I_t \\ & \text{ambient reflected refracted} \end{split}$$

- · Illumination at surface equals
  - Ambient +Diffuse +Specular highlights +
  - Secondary specular reflections and transmissions
- Equivalent to Blinn-Phong plus contributions from specularly reflected and transmitted rays

#### High-level algorithm

```
For each pixel (x,y) {
    eye ray e = ray through pixel (x,y)
    color of pixel (x,y) = Trace (e, scene)
}
Trace (Ray eyeray, Scene scene) {
    o = intersect (eyeray, scene)
    if (o != null) {
        Shade (o, p, N, scene, e,...)
    } else return background color
}
```


#### Shade


© Kavita Bala, Computer Science, Cornell University

```
Shade (Object o, Point pt, Normal N, Scene scene,
    Ray ray, ...) {
    for each light {
        if (!intersect (shadowray, scene))
            color += diffuse+specular // not in shadow
      }
      if (o.specular) color += k<sub>s</sub>Trace (reflected ray)
      if (o.transparent) color += k<sub>t</sub>Trace (refracted ray)
}
```

## Basic Algorithm - Recursion

- Reflected and/or transmitted recursively spawn more rays
  - Ray tree
- Depth cutoff
- Weight cutoff





© Kavita Bala, Computer Science, Cornell University

## Classic Ray Tracing

- Image-based
- Gathering approach
  - from the light sources (direct illumination)
  - from the reflected direction (perfect specular)
  - from the refracted direction (perfect specular)
- All other contributions are ignored!
  - Not a complete solution

#### Whitted RT Assumptions

- Light Source: point light source
  - Hard shadows
  - Single shadow ray direction
- · Material: Blinn-Phong model
  - Diffuse with specular peak
- Light Propagation
  - Occluding objects
  - Specular interreflections only
    - trace rays in mirror reflection direction only

© Kavita Bala, Computer Science, Cornell University

#### History

- · Problems with classic ray tracing:
  - Not realistic: only perfect specular and perfect refraction/reflection between surfaces
  - View-dependent
- Radiosity (1984)
  - Global Illumination in diffuse scenes
  - Discretize scene
- Monte Carlo Ray Tracing (1986)
  - Global Illumination for any environment