

<section-header><image><caption><text>

Summary
 Hard shadows Adaptive shadow maps Edge-and-point rendering Silhouette shadow maps
 Soft shadows Accumulation Buffer Convolution Penumbra Maps Penumbra Wedges
© Kavita Bala, Computer Science, Cornell University

Motivation
 Most techniques work for single light source
 Many light sources Treat it is a single integration domain Importance sample lights Importance sampling (with visibility) still hard problem

© Kavita Bala, Computer Science, Cornell University

Research on many lights

- Ward '91
- Shirley, Wang, Zimmerman '94
- Fernandez, Bala, Greenberg '02
- Wald and Slusallek '03
- Environment Map Sampling...

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Ambient Occlusion

- Interactive hardware rendering with many lights?
- Traditionally "fake" diffuse illumination using an ambient term
- But this just results in a constant additon
- Ambient occlusion adds some visibility to the fake diffuse illumination

© Kavita Bala, Computer Science, Cornell University

- Pre-compute the ambient term
- At each vertex, shoot rays over hemisphere (cosine weighted)

 MC sampling: sample hemisphere
- Does it hit a surface or escape? Compute average visibility (V = 1 – hits/samples)
- Ambient Out = Ambient In * V

 $\ensuremath{\mathbb{C}}$ Kavita Bala, Computer Science, Cornell University

