
1

Lecture 19: Many Lights

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 3 out

– Due next Friday

2

© Kavita Bala, Computer Science, Cornell University

Soft Shadows
• Soft shadows appear natural
• Hard to get soft shadows in hardware
• Slow in software

© Kavita Bala, Computer Science, Cornell University

Heckbert and Herf
• Use accumulation buffer
• Render shadows from multiple point lights

over the area light (like MC)
• Accumulate shadows

16 x 16 samplesaverage

2 x 2 samples

3

© Kavita Bala, Computer Science, Cornell University

Soler and Sillion
• Shadows as convolution

© Kavita Bala, Computer Science, Cornell University

Penumbra Maps
• Wyman and Hansen
• Use shadow map and Haines technique

for soft shadows on arbitrary surfaces
• Penumbra map
• Stores intensity of shadow
• Overall:

– 3 pass: shadow map and penumbra map
– Render image using depth from shadow

map and intensity from penumbra map

4

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Geometry-Based Soft Shadow Volume

• Assarsson and Moller
• Shadow volume approach

V-buffer stores visibility factor [0,1]

5

© Kavita Bala, Computer Science, Cornell University

Computing Visibility: 2 passes
• Shadow volume quads are rendered into the V-buffer:

overestimates umbra
• Penumbra wedges are rendered to compensate

© Kavita Bala, Computer Science, Cornell University

Method Details: Wedge Example

512 x 512 at 5 FPS (software)

6

© Kavita Bala, Computer Science, Cornell University

Visibility Passes
Pass 1: Render shadow volume quads

Pass 2 : Compute visibility for each pixel inside the
shadow wedges:

Point p = (x,y,z): find visibility of p

Precompute 4D coverage textures to accelerate visibility
computation

Can handle textured lights, video textures

© Kavita Bala, Computer Science, Cornell University

Assumptions
• Silhouettes are constant
• Overlapping objects

7

© Kavita Bala, Computer Science, Cornell University

Results

Image of fire used as light source

© Kavita Bala, Computer Science, Cornell University

Results

Soft Shadow Volume 256 Samples 1024 Samples

Resolution: 512 x 512 @ 0.14 FPS
100 x 100 @ 3.00 FPS
256 x 256 @ 0.51 FPS

8

© Kavita Bala, Computer Science, Cornell University

Results

Software Implementation Hardware Implementation

© Kavita Bala, Computer Science, Cornell University

Summary
• Hard shadows

– Adaptive shadow maps
– Edge-and-point rendering
– Silhouette shadow maps
– …

• Soft shadows
– Accumulation Buffer
– Convolution
– Penumbra Maps
– Penumbra Wedges
– …

9

Many Lights

© Kavita Bala, Computer Science, Cornell University

Motivation
• Most techniques work for single light

source

• Many light sources
– Treat it is a single integration domain
– Importance sample lights
– Importance sampling (with visibility) still hard

problem

10

© Kavita Bala, Computer Science, Cornell University

Research on many lights
• Ward ‘91

• Shirley, Wang, Zimmerman ‘94

• Fernandez, Bala, Greenberg ‘02

• Wald and Slusallek ’03

• Environment Map Sampling…

© Kavita Bala, Computer Science, Cornell University

Ward ‘91
• Many lights in RADIANCE
• But all contributions not important

• Ignore some lighting at a point
– User-defined cutoff: x%

• Sort lights according to potential
contribution
– Include G, cosine, L
– EXCLUDE visibility

11

© Kavita Bala, Computer Science, Cornell University

Ward ‘91
• Go through sorted list from the biggest

potential contribution
– Keep running count of visible contribution: V
– Remainder of list (if fully visible) = R
– Stop if R < x% of V

© Kavita Bala, Computer Science, Cornell University

Ward ‘91
• But just can’t ignore remainder R

• Estimate remainder using visibility statistics
from previous shadow tests: hack!

• Performance: 2x to 5x
• But, requires computing all potential

contributions
– Can be expensive for many lights

12

© Kavita Bala, Computer Science, Cornell University

Shirley, Wang, Zimmerman ‘94
• Try to avoid linear cost of evaluating lights
• Separate lights into

– Set of important lights (a small set)
– Set of “dim” lights (large set)

• Construct pdf using:
– all important lights
– 1 out of all the dim lights

• Importance sample these lights

© Kavita Bala, Computer Science, Cornell University

Shirley, Wang, Zimmerman ‘94
• Region of influence for important lights

– Octree cells in region of influence have light in
important set

• However, the partitioning into important
and dim sets remains hard

• Also, still are not taking visibility into
account

13

© Kavita Bala, Computer Science, Cornell University

Fernandez, Bala, Greenberg ‘02
• Local Illumination Environment (LIE):

lights and blockers that affect octree cell

Takes visibility into consideration!

L3 L2 L7
L9

LIELIELIE

L3

G1L7

L9

G2 G8 G5 G2
…L2 G2

© Kavita Bala, Computer Science, Cornell University

Fernandez, Bala, Greenberg ‘02
• All lights/shadows are not visually important
• Weber’s law: 2% cutoff

Light 1

Light 2

Light 3

…

=

All lights

14

© Kavita Bala, Computer Science, Cornell University

Using Masking

• Bright lights can mask out shadow details
• Weber’s Law: variations in lighting are not visible if

ambient lighting is bright enough
– Conservative: 2% cutoff

• LIE: remove relatively dim lights (fully/partially
visible)
– Cheaper shading
– Maximum light contribution < 2% of dimmest point in cell
– Actually, cumulative maximum light contribution < 2% of

dimmest point in cell

© Kavita Bala, Computer Science, Cornell University

200 160.1 30Point 1

230.1 140.5 32Point 4

180.1 9.80.1 12Point 3

250 170 0Point 2

Light 1 Light 2 Light 3 Light 4 Light 5

66.1

69.6

40

42

Total

1.20.1 170.5 32 25Max

0.1 170.5 3225Sorted

Using Masking
Remove from LIE if
cumulative maximum light contribution < 0.02x40

15

© Kavita Bala, Computer Science, Cornell University

Fernandez, Bala, Greenberg ‘02

Image
Cost

Cheap Expensive

Without Masking With Masking

© Kavita Bala, Computer Science, Cornell University

Wald Slusallek ‘03
• PDF for sampling visible lights in

interactive setting
– Assume significant occlusion
– Each room influenced by few lights

• 2-step algorithm (every frame)
• 1st step: Determine important (unoccluded)

lights by crude path tracing
• 2nd step: Importance samples these lights

– Completely ignore (probably) occluded lights

16

© Kavita Bala, Computer Science, Cornell University

Wald Slusallek ‘03

© Kavita Bala, Computer Science, Cornell University

Rendering w/ Environment Maps
• High lighting complexity

• Rich: captures real world

17

© Kavita Bala, Computer Science, Cornell University

Ambient Occlusion
• Interactive hardware rendering with many

lights?

• Traditionally “fake” diffuse illumination
using an ambient term

• But this just results in a constant additon

• Ambient occlusion adds some visibility to
the fake diffuse illumination

© Kavita Bala, Computer Science, Cornell University

Ambient Occlusion
• Pre-compute the ambient term

• At each vertex, shoot rays over
hemisphere (cosine weighted)
– MC sampling: sample hemisphere

• Does it hit a surface or escape? Compute
average visibility (V = 1 – hits/samples)

• Ambient Out = Ambient In * V

18

© Kavita Bala, Computer Science, Cornell University

Ambient Occlusion Example

Diffuse

Environment Map

Ambient Occlusion

X+ =

© Kavita Bala, Computer Science, Cornell University

Problem
• Can move object around without deforming

it

• But, slow!

• How to render interactively with many
lights?
– Open question

