
1

Lecture 18: Shadows

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 1 graded

• HW 2 due tomorrow
– Turn in code AND classes in jar file
– Do NOT hard-code parameters
– Examples with noise have been posted

2

© Kavita Bala, Computer Science, Cornell University

Next-Event Estimation
• How does it work?

© Kavita Bala, Computer Science, Cornell University

Shadows
Methods for fast shadows:

• Shadow Maps

• Shadow Volumes

3

© Kavita Bala, Computer Science, Cornell University

Using the Shadow Map
• When scene is viewed, check viewed location in

light's shadow buffer
– If point's depth is (epsilon) greater than shadow depth,

object is in shadow

shadow
depth map

For each pixel, compare
distance to light with
the depth stored in

the shadow map

© Kavita Bala, Computer Science, Cornell University

Shadow Mapping: Pass 1

• Depth testing from light’s point-of-view
– Two pass algorithm

• First, render depth buffer from light’s
point-of-view
– Result is a “depth map” or “shadow map”
– A 2D function indicating the depth of the

closest pixels to the light
– This depth map is used in the second pass

4

© Kavita Bala, Computer Science, Cornell University

Shadow Mapping: 2nd pass

• Second, render scene from the eye’s point-of-
view

• For each rasterized fragment
– determine fragment’s XYZ position relative to

the light
– this light position should be setup to match the

frustum used to create the depth map
– compare the depth value at light position XY in

the depth map to fragment’s light position Z

© Kavita Bala, Computer Science, Cornell University

Shadow Map Issues
• Can only cast shadows over a frustum

– Use 6 (like a cube map)

• Get speckling because of floating point
errors
– Use triangle ids
– Use bias

If (B > A+bias) p in shadow

5

© Kavita Bala, Computer Science, Cornell University

Properties of Shadow Maps
• One shadow map per light
• Render scene twice per frame

– If static, can reuse

• Advantages
– Fast
– Easy to implement

• Disadvantages
– Bias
– Aliasing
– Hard shadows

© Kavita Bala, Computer Science, Cornell University

Why does Aliasing arise?

Light

Shadow Map

Image Plane

Eye View
Projected

Area

Shadow Map
Projected

Area
!=

Eye View Shadow Map

6

© Kavita Bala, Computer Science, Cornell University

Shadow Volumes
• Clever counting method using stencil

buffer
• Can cast shadows onto curved surfaces

Mark Kilgard, NVIDIA Inc.

© Kavita Bala, Computer Science, Cornell University

Algorithm
• Finding volumes

– Project out shadow volumes
• Rendering

– Render scene into z-buffer, freeze z-buffer
– Draw front-facing volumes in front/back of

pixel
increment stencil

– Draw back-facing volumes in front/back of
pixel

decrement stencil
– If (cnt == 0) lit else shadow

7

© Kavita Bala, Computer Science, Cornell University

Z-fail Approach

frontfacing

backfacing

© Kavita Bala, Computer Science, Cornell University

Performance
• Have to render lots of huge polygons

– Front face increment
– Back face decrement
– Possible capping pass

• Uses a LOT fill rate
• Gives accurate shadows

– IF implemented correctly
• Need access to geometry if want to use

silhouette optimization

8

© Kavita Bala, Computer Science, Cornell University

Comparison
• Shadow Maps

– Adv: Fixed resolution, fast, simple
– Disadv: Bias, aliasing

• Shadow Volumes
– Adv: Accurate, high-quality
– Disadv: Fill-rate limited, hard to implement

robustly

© Kavita Bala, Computer Science, Cornell University

Approaches to Improve Shadows
• Hard Shadows

– Adaptive Shadow Maps [Fernando, Fernandez, Bala,
Greenberg]

– Shadow Silhouette Maps[Sen, Cammarano,
Hanrahan]

• Hard and Soft Shadows
– Edge-and-Point Rendering [Bala, Walter Greenberg]

• Soft Shadows

9

© Kavita Bala, Computer Science, Cornell University

Adaptive Shadow Maps: Motivation
• Fernando, Fernandez, Bala, Greenberg [SIG01]

• Shadow maps require too much tweaking
– Where to place light?
– What resolution to use?

• Goals:
– Address the aliasing problem
– No user intervention
– Interactive frame rate

© Kavita Bala, Computer Science, Cornell University

Adaptive Shadow Maps

• Idea:
– Refine shadow map on the fly

• Goal:
– Shade each eye pixel with a different shadow map pixel

• Implementation:
– Use hierarchical structure for shadow map
– Create/delete pieces of shadow map as needed
– Exploit fast rendering and frame buffer read-backs

10

© Kavita Bala, Computer Science, Cornell University

Results: Images (Mesh)

Conventional Shadow Map
(2048 x 2048 pixels)
16 MB Memory Usage

Adaptive Shadow Map
(Variable Resolution)
16 MB Memory Usage

© Kavita Bala, Computer Science, Cornell University

Results: Images (Mesh Close-Up)

Conventional Shadow Map
16 MB Memory Usage

Adaptive Shadow Map
16 MB Memory Usage

Equivalent Conventional Shadow Map Size:
65,536 × 65,536 Pixels

11

© Kavita Bala, Computer Science, Cornell University

• Edges: important discontinuities
– Silhouettes and shadows

• Points: sparse shading samples

Edge-and-Point Rendering [Bala03]

points

edges

edge-and-point
reconstruction

© Kavita Bala, Computer Science, Cornell University

Edge-and-Point Image
• Alternative display representation
• Edge-constrained interpolation preserves

sharp features
• Fast anti-aliasing

12

© Kavita Bala, Computer Science, Cornell University

• Goal: compact and fast
– Store at most one edge

and one point per pixel
– Limited sub-pixel

precision
– Pre-computed tables give fast anti-aliasing

Edge-and-Point Image (EPI)

EPI pixel

Point sample
(shaded)

Edge

© Kavita Bala, Computer Science, Cornell University

Edge Reconstruction
• Rasterize edges onto image plane
• Record their intersections with pixel

boundaries
• Can handle high complexity objects

RasterizationDiscontinuity Edges

pixel boundary
intersection

13

© Kavita Bala, Computer Science, Cornell University

• Hierarchical trees: fast edge finding
– Fraction of a second

Edge Finding

© Kavita Bala, Computer Science, Cornell University

Soft Shadow Edges
Black: silhouettes,

Red: umbral edges, Blue: penumbral edges

14

© Kavita Bala, Computer Science, Cornell University

Results
• Fast edge finding

• Accurate shadow reconstruction (similar to
shadow volume quality)

• Pre-computed tables give fast anti-aliasing

© Kavita Bala, Computer Science, Cornell University

Silhouette Shadow Map
• Shadow maps with silhouettes for

precision and low fill rate
• Silhouette map: texture map (depth +

silhouette)
– Texel represents (x,y) of point on silhouette
– At most one pt per texel: at most 1 silhouette

• Render with silhouette map
• Overall 3 passes

15

© Kavita Bala, Computer Science, Cornell University

Rendering with Silhouette Map

© Kavita Bala, Computer Science, Cornell University

Implementation
• ATI Radeon 9700 Pro

16

© Kavita Bala, Computer Science, Cornell University

Results
• Relatively simple scenes: 1k-14k triangles
• Little slower than shadow volumes

– but lower overdraw

Soft Shadows

17

© Kavita Bala, Computer Science, Cornell University

Soft Shadows
• Soft shadows appear natural
• Hard to get soft shadows in hardware
• Slow in software

© Kavita Bala, Computer Science, Cornell University

Heckbert and Herf
• Use accumulation buffer
• Render shadows from multiple point lights

over the area light (like MC)
• Accumulate shadows

18

© Kavita Bala, Computer Science, Cornell University

Heckbert and Herf
• Use accumulation buffer
• Render shadows from multiple point lights

over the area light (like MC)
• Accumulate shadows

16 x 16 samplesaverage

2 x 2 samples

© Kavita Bala, Computer Science, Cornell University

Heckbert/Herf Soft Shadows
• Advantage: gives true penumbra
• Limitations: overlapping shadows are

unconvincing unless a lot of passes are made

Images courtesy of Michael Herf and Paul Heckbert

19

© Kavita Bala, Computer Science, Cornell University

Soft Shadow Approximations

• Approximations
– People can’t tell the difference
– Good for games

• Convolution
• Penumbra Maps
• Penumbra Wedges

© Kavita Bala, Computer Science, Cornell University

Soler and Sillion
• Shadows as convolution

20

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

Haines: Shadow Plateaus

• Compute soft shadows on a plane
• Start with umbra from light’s center
• Blur outward from umbra to get penumbra

Receiver

Create the shadow object

21

© Kavita Bala, Computer Science, Cornell University

Haines: Shadow Plateaus

Apply rendering as texture

Find silhouettes and
draw cones & sheets

© Kavita Bala, Computer Science, Cornell University

Plateau Limitations
• Overstated umbra
• Penumbra not physically correct

Plateau Shadows (1 pass) Heckbert/Herf (256 passes)

22

© Kavita Bala, Computer Science, Cornell University

Penumbra Maps
• Wyman and Hansen
• Use shadow map and Haines technique

for soft shadows on arbitrary surfaces
• Penumbra map
• Stores intensity of shadow
• Overall:

– 3 pass: shadow map and penumbra map
– Render image using depth from shadow

map and intensity from penumbra map

© Kavita Bala, Computer Science, Cornell University

Method Details: Visualization

23

© Kavita Bala, Computer Science, Cornell University

Computing Penumbra Map Values

Zvi Distance to vertex vi
ZF Distance to cone/sheet fragment
ZP Depth of shadow map pixel
P Point in the scene
I Intensity in the penumbra map

i

i

i vP

vF

vP

FP

ZZ
ZZ

ZZ
ZZI

−

−
=

−
−

−=1

Uses fragment program

© Kavita Bala, Computer Science, Cornell University

Rendering
• Render from camera’s viewpoint
• If occluded in shadow map, in umbra
• Else, modulate w/ value from penumbra

map

24

© Kavita Bala, Computer Science, Cornell University

Results

© Kavita Bala, Computer Science, Cornell University

25

© Kavita Bala, Computer Science, Cornell University

Assumptions
• Umbra from center is the real umbra; full

penumbra visible from center
• Umbra is fixed size irrespective of size of

light: over-stated umbra
• Silhouette stays fixed over light

