

Shadow Mapping: 2nd pass

- Second, render scene from the eye's point-ofview
- For each rasterized fragment
 - determine fragment's XYZ position relative to the light
 - this light position should be setup to match the frustum used to create the depth map
 - compare the depth value at light position XY in the depth map to fragment's light position Z

Properties of Shadow Maps

- One shadow map per light
- Render scene twice per frame

 If static, can reuse
- Advantages
 - Fast
 - Easy to implement
- Disadvantages
 - Bias
 - Aliasing
 - Hard shadows

Algorithm
Finding volumes
 Project out shadow volumes
Rendering
– Render scene into z-buffer, freeze z-buffer
 Draw front-facing volumes in front/back of pixel
increment stencil
 Draw back-facing volumes in front/back of pixel
 decrement stencil
– If (cnt == 0) lit else shadow
© Kavita Bala, Computer Science, Cornell University

Comparison

- Shadow Maps
 - Adv: Fixed resolution, fast, simple
 - Disadv: Bias, aliasing
- Shadow Volumes
 - Adv: Accurate, high-quality
 - Disadv: Fill-rate limited, hard to implement robustly

• Idea:

– Refine shadow map on the fly

- Goal:
 - Shade each eye pixel with a different shadow map pixel
- Implementation:
 - Use hierarchical structure for shadow map
 - Create/delete pieces of shadow map as needed
 - Exploit fast rendering and frame buffer read-backs

Results: Images (Mesh)

Conventional Shadow Map (2048 x 2048 pixels) 16 MB Memory Usage

Adaptive Shadow Map (Variable Resolution) 16 MB Memory Usage

<section-header><section-header><list-item><list-item>

Penumbra Maps Wyman and Hansen Use shadow map and Haines technique for soft shadows on arbitrary surfaces Penumbra map Stores intensity of shadow Overall: 3 pass: shadow map and penumbra map Render image using depth from shadow map and intensity from penumbra map

 $\ensuremath{\mathbb{C}}$ Kavita Bala, Computer Science, Cornell University

Assumptions

- Umbra from center is the real umbra; full penumbra visible from center
- Umbra is fixed size irrespective of size of light: over-stated umbra
- Silhouette stays fixed over light