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Lecture 18: Shadows
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Kavita Bala

Computer Science
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Announcements
• HW 1 graded

• HW 2 due tomorrow
– Turn in code AND classes in jar file
– Do NOT hard-code parameters
– Examples with noise have been posted
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Next-Event Estimation
• How does it work?
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Shadows
Methods for fast shadows:

• Shadow Maps

• Shadow Volumes
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Using the Shadow Map
• When scene is viewed, check viewed location in 

light's shadow buffer
– If point's depth is (epsilon) greater than shadow depth, 

object is in shadow

shadow
depth map

For each pixel, compare
distance to light     with
the depth     stored in

the shadow map
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Shadow Mapping: Pass 1

• Depth testing from light’s point-of-view
– Two pass algorithm

• First, render depth buffer from light’s 
point-of-view
– Result is a “depth map” or “shadow map”
– A 2D function indicating the depth of the 

closest pixels to the light
– This depth map is used in the second pass 
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Shadow Mapping: 2nd pass

• Second, render scene from the eye’s point-of-
view

• For each rasterized fragment
– determine fragment’s XYZ position relative to 

the light
– this light position should be setup to match the 

frustum used to create the depth map
– compare the depth value at light position XY in 

the depth map to fragment’s light position Z
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Shadow Map Issues
• Can only cast shadows over a frustum

– Use 6 (like a cube map)

• Get speckling because of floating point 
errors
– Use triangle ids
– Use bias

If (B  > A+bias) p in shadow
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Properties of Shadow Maps
• One shadow map per light
• Render scene twice per frame

– If static, can reuse

• Advantages
– Fast
– Easy to implement

• Disadvantages
– Bias
– Aliasing
– Hard shadows
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Why does Aliasing arise?

Light

Shadow Map

Image Plane

Eye View
Projected 

Area

Shadow Map
Projected 

Area
!=

Eye View Shadow Map
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Shadow Volumes
• Clever counting method using stencil 

buffer
• Can cast shadows onto curved surfaces

Mark Kilgard, NVIDIA Inc.
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Algorithm
• Finding volumes

– Project out shadow volumes
• Rendering

– Render scene into z-buffer, freeze z-buffer
– Draw front-facing volumes in front/back of 

pixel
increment stencil

– Draw back-facing volumes in front/back of 
pixel

decrement stencil
– If (cnt == 0) lit else shadow
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Z-fail Approach

frontfacing

backfacing
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Performance
• Have to render lots of huge polygons

– Front face increment
– Back face decrement
– Possible capping pass

• Uses a LOT fill rate 
• Gives accurate shadows

– IF implemented correctly
• Need access to geometry if want to use 

silhouette optimization
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Comparison
• Shadow Maps

– Adv: Fixed resolution, fast, simple
– Disadv: Bias, aliasing

• Shadow Volumes
– Adv: Accurate, high-quality
– Disadv: Fill-rate limited, hard to implement 

robustly
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Approaches to Improve Shadows
• Hard Shadows

– Adaptive Shadow Maps [Fernando, Fernandez, Bala, 
Greenberg]

– Shadow Silhouette Maps[Sen, Cammarano,
Hanrahan]

• Hard and Soft Shadows
– Edge-and-Point Rendering [Bala, Walter Greenberg]

• Soft Shadows
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Adaptive Shadow Maps: Motivation
• Fernando, Fernandez, Bala, Greenberg [SIG01]

• Shadow maps require too much tweaking
– Where to place light?
– What resolution to use?

• Goals:
– Address the aliasing problem
– No user intervention
– Interactive frame rate
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Adaptive Shadow Maps

• Idea:
– Refine shadow map on the fly

• Goal:
– Shade each eye pixel with a different shadow map pixel

• Implementation:
– Use hierarchical structure for shadow map
– Create/delete pieces of shadow map as needed
– Exploit fast rendering and frame buffer read-backs
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Results: Images (Mesh)

Conventional Shadow Map
(2048 x 2048 pixels)
16 MB Memory Usage

Adaptive Shadow Map
(Variable Resolution)
16 MB Memory Usage
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Results: Images (Mesh Close-Up)

Conventional Shadow Map
16 MB Memory Usage

Adaptive Shadow Map
16 MB Memory Usage

Equivalent Conventional Shadow Map Size: 
65,536 × 65,536 Pixels
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• Edges: important discontinuities
– Silhouettes and shadows

• Points: sparse shading samples

Edge-and-Point Rendering [Bala03]

points

edges

edge-and-point 
reconstruction
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Edge-and-Point Image
• Alternative display representation
• Edge-constrained interpolation preserves 

sharp features
• Fast anti-aliasing



12

© Kavita Bala, Computer Science, Cornell University

• Goal: compact and fast
– Store at most one edge 

and one point per pixel
– Limited sub-pixel 

precision
– Pre-computed tables give fast anti-aliasing

Edge-and-Point Image (EPI)

EPI pixel

Point sample
(shaded)

Edge
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Edge Reconstruction
• Rasterize edges onto image plane
• Record their intersections with pixel 

boundaries
• Can handle high complexity objects

RasterizationDiscontinuity Edges

pixel boundary
intersection
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• Hierarchical trees: fast edge finding
– Fraction of a second

Edge Finding
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Soft Shadow Edges
Black: silhouettes, 

Red: umbral edges, Blue: penumbral edges
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Results
• Fast edge finding

• Accurate shadow reconstruction (similar to 
shadow volume quality)

• Pre-computed tables give fast anti-aliasing
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Silhouette Shadow Map
• Shadow maps with silhouettes for 

precision and low fill rate
• Silhouette map: texture map (depth + 

silhouette)
– Texel represents (x,y) of point on silhouette
– At most one pt per texel: at most 1 silhouette

• Render with silhouette map
• Overall 3 passes



15

© Kavita Bala, Computer Science, Cornell University

Rendering with Silhouette Map
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Implementation
• ATI Radeon 9700 Pro
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Results
• Relatively simple scenes: 1k-14k triangles
• Little slower than shadow volumes

– but lower overdraw

Soft Shadows
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Soft Shadows
• Soft shadows appear natural 
• Hard to get soft shadows in hardware
• Slow in software
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Heckbert and Herf
• Use accumulation buffer
• Render shadows from multiple point lights 

over the area light (like MC)
• Accumulate shadows
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Heckbert and Herf
• Use accumulation buffer
• Render shadows from multiple point lights 

over the area light (like MC)
• Accumulate shadows

16 x 16 samplesaverage

2 x 2 samples
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Heckbert/Herf Soft Shadows
• Advantage: gives true penumbra
• Limitations: overlapping shadows are 

unconvincing unless a lot of passes are made

Images courtesy of Michael Herf and Paul Heckbert
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Soft Shadow Approximations

• Approximations
– People can’t tell the difference
– Good for games

• Convolution
• Penumbra Maps 
• Penumbra Wedges
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Soler and Sillion
• Shadows as convolution
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Haines: Shadow Plateaus

• Compute soft shadows on a plane
• Start with umbra from light’s center
• Blur outward from umbra to get penumbra

Receiver

Create the shadow object
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Haines: Shadow Plateaus

Apply rendering as texture

Find silhouettes and 
draw cones & sheets
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Plateau Limitations
• Overstated umbra
• Penumbra not physically correct

Plateau Shadows (1 pass)   Heckbert/Herf (256 passes)
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Penumbra Maps
• Wyman and Hansen
• Use shadow map and Haines technique 

for soft shadows on arbitrary surfaces
• Penumbra map 
• Stores intensity of shadow
• Overall: 

– 3 pass: shadow map and penumbra map
– Render image using depth from shadow 

map and intensity from penumbra map
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Method Details: Visualization
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Computing Penumbra Map Values

Zvi Distance to vertex vi
ZF Distance to cone/sheet fragment
ZP Depth of shadow map pixel
P Point in the scene
I Intensity in the penumbra map
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Uses fragment program

© Kavita Bala, Computer Science, Cornell University

Rendering
• Render from camera’s viewpoint
• If occluded in shadow map, in umbra
• Else, modulate w/ value from penumbra 

map
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Results

© Kavita Bala, Computer Science, Cornell University



25

© Kavita Bala, Computer Science, Cornell University

Assumptions
• Umbra from center is the real umbra; full 

penumbra visible from center
• Umbra is fixed size irrespective of size of 

light: over-stated umbra
• Silhouette stays fixed over light


