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Projects
• Proposals due today

• I will mail out comments

• Grading HW 1: will email comments asap
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Why Shadows?
• Crucial for spatial and depth perception
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Shadows
Methods for fast shadows:

• Shadow Maps

• Shadow Volumes
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Shadow Maps

• Introduced by Lance Williams (SIGGRAPH 1978)

• Render scene from light’s view
– black is close, white is far
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Using the Shadow Map
• When scene is viewed, check viewed location in 

light's shadow buffer
– If point's depth is (epsilon) greater than shadow depth, 

object is in shadow

shadow
depth map

For each pixel, compare
distance to light     with
the depth     stored in

the shadow map
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Shadow Mapping: Pass 1

• Depth testing from light’s point-of-view
– Two pass algorithm

• First, render depth buffer from light’s 
point-of-view
– Result is a “depth map” or “shadow map”
– A 2D function indicating the depth of the 

closest pixels to the light
– This depth map is used in the second pass 
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How Shadow Maps Work

Shadow MapEye View
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How Shadow Maps Work

Shadow MapEye View
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Shadow Mapping: 2nd pass

• Second, render scene from the eye’s point-of-
view

• For each rasterized fragment
– determine fragment’s XYZ position relative to 

the light
– this light position should be setup to match the 

frustum used to create the depth map
– compare the depth value at light position XY in 

the depth map to fragment’s light position Z
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Shadow Mapping: Comparison

• Two values
– A = Z value from depth map at fragment’s 

light XY position
– B = Z value of fragment’s XYZ light position

• If (B > A), 
– There must be something closer to the light 

than the fragment
– So, fragment is shadowed

• If A and B are approximately equal, the 
fragment is lit

© Kavita Bala, Computer Science, Cornell University

Example: Shadowed

light
source 

eye
position 

depth map Z  = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer

The A < B shadowed fragment case



3

© Kavita Bala, Computer Science, Cornell University

Example: Visible

light
source 

eye
position 

depth map Z  = A

fragment’s
light Z = B

depth map image plane

eye view image plane,
a.k.a. the frame buffer
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Example

the point
light source

© Kavita Bala, Computer Science, Cornell University

Example

with shadows without shadows
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Shadow Map Issues
• Can only cast shadows over a frustum

– Use 6 (like a cube map)

• Get speckling because of floating point 
errors
– Use triangle ids
– Use bias

If (B  > A+bias) p in shadow
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Shadow Map Issues
• Use triangle Ids

– Meshes?

• Bias
– If (B  > A+bias) p in shadow
– If b is large? 
– If b is small?
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Bias Issues

• How much polygon offset bias depends

Too little bias,
speckling

Too much bias, shadow
starts too far back

Just right
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Shadow Maps on Hardware
• Shadow Maps use projective textures

• Treat texture as a light source (slide 
projector)
– Do not need to specify texture coordinates 

explicitly
– Spotlights

Source: Wolfgang Heidrich
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Properties of Shadow Maps
• One shadow map per light
• Render scene twice per frame

– If static, can reuse

• Advantages
– Fast
– Easy to implement

• Disadvantages
– Bias
– Aliasing
– Hard shadows
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Aliasing (Distant)
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Aliasing in Eye View (Distant)
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Aliasing (Close)
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Where does aliasing occur?

Shadow Boundary
(Adequate Resolution)

Fully Lit

Fully Occluded
Shadow Boundary

(Inadequate Resolution)
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Why does Aliasing arise?

Light

Shadow Map

Image Plane

Eye View
Projected 

Area

Shadow Map
Projected 

Area
!=

Eye View Shadow Map
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Shadows
Methods for fast shadows:

• Shadow Maps

• Shadow Volumes
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Shadow Volumes
• Crow 1977
• Accurate shadows

Image courtesy of BioWare Neverwinter Nights
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Shadow Volumes
• Clever counting method using stencil 

buffer
• Can cast shadows onto curved surfaces

Mark Kilgard, NVIDIA Inc.
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Volume Concept
• Create volumes of space in shadow from 

light
• Each triangle creates 3 projecting quads
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Using the Volume
• To test a point, count the number of polygons 

between it and eye
• If more frontfacing than backfacing polygons, 

then in shadow
• Done with clever counting method using the 

stencil buffer

frontfacing

backfacing
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Algorithm
• Finding volumes

– Project out shadow volumes
• Rendering

– Render scene into z-buffer, freeze z-buffer
– Draw front-facing volumes in front of pixel

increment stencil
– Draw back-facing volumes in front of pixel

decrement stencil
– If (cnt == 0) lit else shadow
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Multiple Shadow Volumes

frontfacing

backfacing
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Shadow Volumes Properties
• Performance: Use the silhouette for speed

• What is a silhouette?

N1·V > 0 (forward facing)
N2·V < 0 (backward facing)

V

N2
N1

objecteye
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Near Plane Clip Issues

• Near plane clip discards part of shadow 
volume, messes up count
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Z-fail Approach

frontfacing

backfacing
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But
• Far clipping plane problems?

• Use homogeneous coordinate to map to 
infinity
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Performance
• Have to render lots of huge polygons

– Front face increment
– Back face decrement
– Possible capping pass

• Uses a LOT fill rate 
• Gives accurate shadows

– IF implemented correctly
• Need access to geometry if want to use 

silhouette optimization
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Summary

• Shadow maps
– Render scene twice per frame

If static, can reuse
– Uses projective texturing, requires hardware 

support/shaders

• Shadow volumes
– Use stencil buffers
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Comparison
• Shadow Maps

– Adv: Fixed resolution, fast, simple
– Disadv: Bias, aliasing

• Shadow Volumes
– Adv: Accurate, high-quality
– Disadv: Fill-rate limited, hard to implement 

robustly

© Kavita Bala, Computer Science, Cornell University

Approaches to Improve Shadows
• Hard Shadows

– Adaptive Shadow Maps [Fernando, Fernandez, Bala, 
Greenberg]

– Shadow Silhouette Maps[Sen, Cammarano,
Hanrahan]

• Hard and Soft Shadows
– Edge-and-Point Rendering [Bala, Walter Greenberg]

• Soft Shadows
– Next time
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Adaptive Shadow Maps: Motivation
• Fernando, Fernandez, Bala, Greenberg [SIG01]

• Shadow maps require too much tweaking
– Where to place light?
– What resolution to use?

• Goals:
– Address the aliasing problem
– No user intervention
– Interactive frame rate
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Adaptive Shadow Maps

• Idea:
– Refine shadow map on the fly

• Goal:
– Shade each eye pixel with a different shadow map pixel

• Implementation:
– Use hierarchical structure for shadow map
– Create/delete pieces of shadow map as needed
– Exploit fast rendering and frame buffer read-backs
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ASM Data Structure

• Simple 2D tree:

Low

High

Resolution

© Kavita Bala, Computer Science, Cornell University

Results: Images (Robot)

Conventional Shadow Map
(2048 x 2048 pixels)
16 MB Memory Usage

Adaptive Shadow Map
(Variable Resolution)
16 MB Memory Usage
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Results: Images (Robot Close-Up)

Conventional Shadow Map
16 MB Memory Usage

Adaptive Shadow Map
16 MB Memory Usage

Equivalent Conventional Shadow Map Size: 
65,536 × 65,536 Pixels
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Results: Images (Mesh)

Conventional Shadow Map
(2048 x 2048 pixels)
16 MB Memory Usage

Adaptive Shadow Map
(Variable Resolution)
16 MB Memory Usage
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Results: Images (Mesh Close-Up)

Conventional Shadow Map
16 MB Memory Usage

Adaptive Shadow Map
16 MB Memory Usage

Equivalent Conventional Shadow Map Size: 
65,536 × 65,536 Pixels


