

Performance Have to render lots of huge polygons Front face increment Back face decrement Possible capping pass Uses a LOT fill rate Gives accurate shadows IF implemented correctly Need access to geometry if want to use silhouette optimization

© Kavita Bala, Computer Science, Cornell University

Comparison

- Shadow Maps
 - Adv: Fixed resolution, fast, simple
 - Disadv: Bias, aliasing
- Shadow Volumes
 - Adv: Accurate, high-quality
 - Disadv: Fill-rate limited, hard to implement robustly

© Kavita Bala, Computer Science, Cornell University

• Idea:

– Refine shadow map on the fly

- Goal:
 - Shade each eye pixel with a different shadow map pixel
- Implementation:
 - Use hierarchical structure for shadow map
 - Create/delete pieces of shadow map as needed
 - Exploit fast rendering and frame buffer read-backs

© Kavita Bala, Computer Science, Cornell University

Results: Images (Robot Close-U

Conventional Shadow Map 16 MB Memory Usage Adaptive Shadow Map 16 MB Memory Usage Equivalent Conventional Shadow Map Size: 65,536 × 65,536 Pixels © Kavita Bala, Computer Science, Cornell University

Results: Images (Mesh Close-Up)

Conventional Shadow Map 16 MB Memory Usage Equivalent Conventional Shadow Map Size: 65,536 × 65,536 Pixels © Kavita Bala, Computer Science, Cornell University