Lecture 16: Hardware Rendering and Projects

Fall 2004 Kavita Bala Computer Science Cornell University

New Programmable GPUs

- Pipelined and parallel
 Current pipeline 600-800 stages deep!
- Branching/looping??
- · Floating point arithmetic
- · Programmable Vertex and Shader programs
- · Essentially writing assembly/C code

© Kavita Bala, Computer Science, Cornell University

Key Hardware Capabilities

- Z-Buffering
- Accumulation Buffer
- Antialiasing
- Transparency/Compositing
- Stencil Buffer
- Filtered Texturing

<section-header><image><image><image>

Picking the cube map

- Compute R
 - Don't need to normalize it
- Pick the largest component (magnitude) – What does it mean?
- Scale other two components to [0,1]

Sphere Maps

- · Assume viewing is from infinity
- Capture reflections

 Creation uses photographs or ray tracing or warping

- · Limits to what hardware can do in 1 pass
- So multi-pass texturing
 - Each pass does some part of shading
 - Outputs a "fragment": rgb, alpha, z
 - Add or blend with previous pass
- For example
 - 1st pass: diffuse
 - 2nd pass: specular

Other topics: Point-based Rendering

- · Use points instead of polygons
- Much more compact and robust
- How to render? – Splat points in hardware

© Kavita Bala, Computer Science, Cornell University

Project Ideas

- High-complexity rendering – Point-based rendering
- Texture for complexity – Texture synthesis
- Acceleration structures
 - Support for dynamics