Lecture 16: Hardware Rendering and Projects

> Fall 2004 Kavita Bala Computer Science Cornell University

Announcements

- Project proposal due Oct 26
- Contact me if you are still unsure

Key Hardware Capabilities

- Z-Buffering
- Accumulation Buffer
- Antialiasing
- Transparency/Compositing
- Stencil Buffer
- Filtered Texturing

Multi-Pass Texturing

• Limits to what hardware can do in 1 pass

- So multi-pass texturing
 - Each pass does some part of shading
 - Outputs a "fragment": rgb, alpha, z
 - Add or blend with previous pass
- For example
 - 1st pass: diffuse
 - 2nd pass: specular

Dependent Texture Reads

- Introduced in 1999
- Number of passes proportional to the longest "chain" of operations you need
- Dependent texture reads helps
 - Can read a texture
 - Transform it
 - And then read another texture based on transformed value!
 - Much more efficient

Project Ideas

- High-complexity rendering

 Point-based rendering
- Texture for complexity
 - Texture synthesis
- Acceleration structures
 Support for dynamics