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Hardware Rendering
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Computer Science
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Announcements
• Project discussion this week

– Proposals: Oct 26

• Exam moved to Nov 18 (Thursday)
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Bounding Volume vs. Spatial Hierarchy
• Object subdivision

– Hierarchical object 
representation

– Hierarchically cluster 
objects

• Siblings could overlap
• Object in single leaf
• Ray marches down
• AABB,OBB,Spheres

• Spatial subdivision
– Hierarchical spatial 

representation
– Hierarchically cluster 

space
• Siblings distinct
• Object in >1 leaf (higher)

• Ray marches across 
• Octree,kd-tree,Grid
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Culling of Complex Scenes
• Remove geometry that is not visible … cull 

it away
– View Frustum Culling
– Hierarchical z-buffer
– Cell-portal visibility
– Many others….
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Hierarchical View Frustum Culling
• Use an octree/BVH

• Start at o = root of  octree/BVH 
• Test(Node o) {

– Check 6 planes of frustum for intersection with 
bbox(o)

– If in or out, terminate testing
– If it intersects

For each child c = child[i], Test (c)
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Occlusion Culling
• Occlusion Culling/Visibility Culling
• Don’t send all polygons to hardware

– Remove polygons that are not visible
– Conservative: find visible superset
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Occlusion Culling
• On-line

– Remove geometry on-the-fly

• Off-line
– Determine potentially visible set (PVS)
– When rendering only display PVS
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Hierarchical Z-buffer
• On-line
• Use nearby polygons to remove far 

polygons
• Construct an octree subdivision of scene

– Could use other data structures as well 
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Off-line 
• Interactive walkthroughs of very complex  

systems
– Radiosity systems
– Too many polygons

• Teller: Cell/Portal for indoor scenes
– Used in games: Doom, Descent
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Cell Portal Architecture
• Internal architectural scene
• Cells: Rooms
• Portals: Doors and Windows
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First Idea
• Find all cells visible from current cell

• Recursively propagate visibility

• Problem: Too conservative
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Stab Tree
• Form a stab tree

• Check if a line exists that stabs all portals
– Use linear programming
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More Recent Work
• How to deal with non-architectural scenes

– Cityscapes
– Small Blockers: add up to large occlusion
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More Recent Work
• But forests? Not really… Not yet!

• What about dynamic scenes?
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Summary
• Acceleration structures for:

– Ray Tracing
– Collision detection
– Point finding
– Visibility culling
– View frustum culling
– …

CS 665

Hardware Rendering

Images from Real-Time Rendering
Courtesy Eric Haines
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Strengths of Hardware
• High throughput

– Lots of polygons/second or pixels/second
• In the past:

– Fixed functionality
– Shading, transformations, clipping, etc.

• Hardware has been transformed
– Programmable 
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Review: Graphics Pipeline

Application

Transform & Lighting

Triangle Setup

Rasterization

Display

Projection & Clipping
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Why is Hardware Fast
• Pipelined and parallel

• No branching/looping (??)
• Aggressive prefetching from memory
• Pixel arithmetic is usually 8 bit fixed-point         

(this has changed)
This is the traditional “fixed-function pipeline”

App Raster

Raster

Geom

Geom

… …

Display
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Traditional OpenGL

Fragment?!
Basically, pixel

Transform & Lighting

Transformed vertices

Fragments

Textured fragments

Frame
Buffer

Vertices

Texture 
Memory

Rasterization

Texturing

Composite



11

© Kavita Bala, Computer Science, Cornell University

Display

Rasterization

Projection & Clipping

Transform & Lighting 

Application

The dark ages (early-mid 1990’s), when there were only frame 
buffers for normal PC’s.

This is where pipelines start for PC commodity graphics, prior to 
Fall of 1999.

This part of the pipeline reaches the consumer level with the 
introduction of the NVIDIA GeForce256.

Hardware today is moving traditional application processing (surface 
generation, occlusion culling) into the graphics accelerator.

Some accelerators were no more than a simple chip that sped up 
linear interpolation along a single span, so increasing fill rate.

Brief History
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New OpenGL

Vertex Shader

Transformed vertices

Fragments

Shaded fragments

Frame
Buffer

Vertices

Texture 
Memory

Rasterization

Fragment Shader

Composite

Vertex
Program

Fragment
Program
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New Programmable GPUs

• Pipelined and parallel
– Current pipeline 600-800 stages deep!

• Branching/looping??

• Floating point arithmetic

• Programmable Vertex and Shader programs

• Essentially writing assembly/C code
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Fixed-Function vs. Programmable
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Xbox Architecture

UMA (Unified Memory 
Architecture)
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GeForce 4 Vertex Shaders
• Sets of 4 word registers
• Data passed in through v, c registers
• Data out through o registers to next stage
• Vertex attribute registers

– v[POS], v[NML],…
– position, normal, …
– Programmer loads data

• Result registers
• Temporary registers
• Constant registers
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Vertex Program Assembly
• Instructions operate on scalar or 4 vector
• Result is 4 vector or scalar (replicated)

• Examples
– MOV v : Out v
– DP4 v, v: ssss
– Swizzle, .wxyz

• glLoadProgramNV
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Shading Languages
• Assembly hard to program

• In 2002, many shading languages
– e.g. Cg from NVIDIA, HLSL in DirectX 9

• Benefits:
– Ease of use
– Hardware independence
– Reusable code
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Cg Example
Vertout main (… uniform float4 LightVec)
{
vertout Out;
Out.Hposition = …

float 4 light = normalize (LightVec)
float diffuse = dot (normal, light);
…
return Out;
}
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What’s New Since 1999
• Vertex Shader
• Pixel/Fragment Shader
• And much faster, of course

– Peak fill rates
– 1999 GeForce256:       0.35 Gigapixel 
– 2001 GeForce3:           0.8  Gigapixel
– 2003 GeForceFX Ultra: 2 Gigapixel
– ATI Radeon 9800 Pro : 3 Gigapixel
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Faster than Moore’s Law

Peak 
Performance 
(∆'s/sec)

Year

HP CRX
SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX

HP TVRX

SGI SkyWriter

SGI 

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz) 

SGI
RE2

RE1
Megatek

86 88 90 92 94 96 98 00
104

105

106

107

108

109

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat 
shading 

Gouraud
shading  

Antialiasing

Slope ~2.4x/year 
(Moore's Law ~ 1.7x/year) SGI 

IR E&S
Harmony

SGI 
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division
Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia TNT
3DLabs

Graph courtesy of Professor John Poulton 

GeForce

104

105

106

107

108

109

ATI 
Radeon 256
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Programmable GPU Shading

• Multithreaded SIMD organization
• Multiple parallel units 
• Same instructions executed on n

vertices or fragments in parallel
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Performance Issues
• Pipeline: bottleneck analysis

• Parallelism: load balancing

• Memory bandwidth limits
– Texture reads
– Z-Buffering
– Host interface
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GPU Parallelism
• GPUs exploit both 

– Task parallelism: pipeline
– data (vertex, triangle, fragment) parallelism

Process k triangles in parallel, m fragments in parallel
But, some triangles generate more fragments, some 
parts of screen written to more than others

• Various approaches to load balancing
– FIFO buffering

• Pipeline in GeForce3 up to 800 clocks long 
(compare to 10-20 on CPUs)
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Bandwidth

• Bandwidth scales with perimeter
• Computation scales with area
• Memory, buses MUCH slower than internal 

processing
• CPUs: use lots and lots and lots of caches 

to match memory speeds
• GPUs: exploit streaming computation, 

prefetching, block transfers, coherence 
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Texture Cache
• Prefetch texture block

• Texture data spatially organized to 
maximize coherence

• May reorder texture lookups to improve 
temporal coherence
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Current/Future
• Faster 

– More parallelism

• More generalized shading languages
– Fewer constraints in programs
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Key Hardware Capabilities

• Z-Buffering
• Accumulation Buffer
• Antialiasing
• Transparency/Compositing
• Stencil Buffer
• Filtered Texturing
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Accumulation Buffer
• Render a scene a number of times, making small 

variations
• Blend the results to make a single image. 

Effects produced include:
• Antialiasing 
• Depth of Field
• Motion Blur
• Soft Shadows

• Needs more precision than ordinary buffers

© Kavita Bala, Computer Science, Cornell University

Accumulation Buffer
Anti-aliasing
Motion Blur
Depth of Field
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Stereo Buffers
• Render left and right eye views

– Both front and back left and right buffers

• Display hardware alternates frames
• Controls shutter glasses
• May also 

– use head or eye tracking
– use head-mounted-display (HMD) and 

multiple parallel outputs instead
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Stencil Buffers
• 1 to 8 bitplanes

– Usually “leftover” bits in depth buffer
– May need to use 24-bit depth to use

• Stencil test used
– Tests: ==, <, <=, >, >= ref value

• Operations can modify stencil value:
– Ex: increment stencil if passes depth test
– Different ops for fail, zfail, zpass

• Can mask out parts of stencil to modify
• Used for shadow volumes, reflections, etc.
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Reflections
Planar: flip object through mirror

© Kavita Bala, Computer Science, Cornell University

Reflection & Stencil Buffer
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Reflection Example - Castle

Agata & Andrzej Wojaczek, Advanced Graphics Applications Inc.

© Kavita Bala, Computer Science, Cornell University

Castle’s Geometry

Agata & Andrzej Wojaczek, Advanced Graphics Applications Inc.
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P-Buffers
• Permit rendering to off-screen target

– Addresses dimension limitations
– Example, used for shadow maps

• P-buffer in one context can be associated with 
texture in another

• ATI Radeon 9700: 
– fragment shader can write to up to four output buffers 

simultaneously
– potentially useful for multipass algorithms

© Kavita Bala, Computer Science, Cornell University

Key Hardware Capabilities

• Z-Buffering
• Accumulation Buffer
• Antialiasing
• Transparency/Compositing
• Stencil Buffer
• Filtered Texturing
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Texture Mapping

Images courtesy Tito Pagan
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Mipmapping Filtering
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Fast Texture Map Lookup

• Very powerful feature of hardware
• Most flexible part of graphics hardware

– Surface texturing
– Bump mapping: normals
– Reflection mapping
– Shadow mapping
– Even arbitrary BRDF approximations

• Cheap anti-aliasing & anisotropic filtering
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Many types of Texture Maps
• Texture modulates diffuse coefficients in 

shading model

• Textures can modulate
– Normals: bump mapping and normal mapping
– Positions: displacement mapping
– Lighting: environment mapping
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Environment Map
• Want to compute reflections of 

environment on surfaces
– Planar surfaces?
– Curved surfaces

• Assumptions:
– Environment Map represents objects at infinity

• Index into EM using reflection vector
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Environment Mapping

• EM gives reflections in curved surfaces
– Not very good for flat surfaces
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Env Map Algorithm
• Generate 2D environment map

– Spherical, cubical, paraboloid

• For each pixel on a reflective object
– Find N on surface of object
– Compute R from V and N: R = V – 2 (N.V) N
– Index into EM using R
– Modulate pixel color
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Types of Mappings

Sphere mapping

Cube  mapping


