
1

Lecture 15:
Hardware Rendering

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• Project discussion this week

– Proposals: Oct 26

• Exam moved to Nov 18 (Thursday)

2

© Kavita Bala, Computer Science, Cornell University

Bounding Volume vs. Spatial Hierarchy
• Object subdivision

– Hierarchical object
representation

– Hierarchically cluster
objects

• Siblings could overlap
• Object in single leaf
• Ray marches down
• AABB,OBB,Spheres

• Spatial subdivision
– Hierarchical spatial

representation
– Hierarchically cluster

space
• Siblings distinct
• Object in >1 leaf (higher)

• Ray marches across
• Octree,kd-tree,Grid

© Kavita Bala, Computer Science, Cornell University

Culling of Complex Scenes
• Remove geometry that is not visible … cull

it away
– View Frustum Culling
– Hierarchical z-buffer
– Cell-portal visibility
– Many others….

3

© Kavita Bala, Computer Science, Cornell University

Hierarchical View Frustum Culling
• Use an octree/BVH

• Start at o = root of octree/BVH
• Test(Node o) {

– Check 6 planes of frustum for intersection with
bbox(o)

– If in or out, terminate testing
– If it intersects

For each child c = child[i], Test (c)

© Kavita Bala, Computer Science, Cornell University

Occlusion Culling
• Occlusion Culling/Visibility Culling
• Don’t send all polygons to hardware

– Remove polygons that are not visible
– Conservative: find visible superset

4

© Kavita Bala, Computer Science, Cornell University

Occlusion Culling
• On-line

– Remove geometry on-the-fly

• Off-line
– Determine potentially visible set (PVS)
– When rendering only display PVS

© Kavita Bala, Computer Science, Cornell University

Hierarchical Z-buffer
• On-line
• Use nearby polygons to remove far

polygons
• Construct an octree subdivision of scene

– Could use other data structures as well

5

© Kavita Bala, Computer Science, Cornell University

Off-line
• Interactive walkthroughs of very complex

systems
– Radiosity systems
– Too many polygons

• Teller: Cell/Portal for indoor scenes
– Used in games: Doom, Descent

© Kavita Bala, Computer Science, Cornell University

Cell Portal Architecture
• Internal architectural scene
• Cells: Rooms
• Portals: Doors and Windows

6

© Kavita Bala, Computer Science, Cornell University

First Idea
• Find all cells visible from current cell

• Recursively propagate visibility

• Problem: Too conservative

© Kavita Bala, Computer Science, Cornell University

Stab Tree
• Form a stab tree

• Check if a line exists that stabs all portals
– Use linear programming

7

© Kavita Bala, Computer Science, Cornell University

More Recent Work
• How to deal with non-architectural scenes

– Cityscapes
– Small Blockers: add up to large occlusion

© Kavita Bala, Computer Science, Cornell University

More Recent Work
• But forests? Not really… Not yet!

• What about dynamic scenes?

8

© Kavita Bala, Computer Science, Cornell University

Summary
• Acceleration structures for:

– Ray Tracing
– Collision detection
– Point finding
– Visibility culling
– View frustum culling
– …

CS 665

Hardware Rendering

Images from Real-Time Rendering
Courtesy Eric Haines

9

© Kavita Bala, Computer Science, Cornell University

Strengths of Hardware
• High throughput

– Lots of polygons/second or pixels/second
• In the past:

– Fixed functionality
– Shading, transformations, clipping, etc.

• Hardware has been transformed
– Programmable

© Kavita Bala, Computer Science, Cornell University

Review: Graphics Pipeline

Application

Transform & Lighting

Triangle Setup

Rasterization

Display

Projection & Clipping

10

© Kavita Bala, Computer Science, Cornell University

Why is Hardware Fast
• Pipelined and parallel

• No branching/looping (??)
• Aggressive prefetching from memory
• Pixel arithmetic is usually 8 bit fixed-point

(this has changed)
This is the traditional “fixed-function pipeline”

App Raster

Raster

Geom

Geom

… …

Display

© Kavita Bala, Computer Science, Cornell University

Traditional OpenGL

Fragment?!
Basically, pixel

Transform & Lighting

Transformed vertices

Fragments

Textured fragments

Frame
Buffer

Vertices

Texture
Memory

Rasterization

Texturing

Composite

11

© Kavita Bala, Computer Science, Cornell University

Display

Rasterization

Projection & Clipping

Transform & Lighting

Application

The dark ages (early-mid 1990’s), when there were only frame
buffers for normal PC’s.

This is where pipelines start for PC commodity graphics, prior to
Fall of 1999.

This part of the pipeline reaches the consumer level with the
introduction of the NVIDIA GeForce256.

Hardware today is moving traditional application processing (surface
generation, occlusion culling) into the graphics accelerator.

Some accelerators were no more than a simple chip that sped up
linear interpolation along a single span, so increasing fill rate.

Brief History

© Kavita Bala, Computer Science, Cornell University

New OpenGL

Vertex Shader

Transformed vertices

Fragments

Shaded fragments

Frame
Buffer

Vertices

Texture
Memory

Rasterization

Fragment Shader

Composite

Vertex
Program

Fragment
Program

12

© Kavita Bala, Computer Science, Cornell University

New Programmable GPUs

• Pipelined and parallel
– Current pipeline 600-800 stages deep!

• Branching/looping??

• Floating point arithmetic

• Programmable Vertex and Shader programs

• Essentially writing assembly/C code

© Kavita Bala, Computer Science, Cornell University

Fixed-Function vs. Programmable

13

© Kavita Bala, Computer Science, Cornell University

Xbox Architecture

UMA (Unified Memory
Architecture)

© Kavita Bala, Computer Science, Cornell University

GeForce 4 Vertex Shaders
• Sets of 4 word registers
• Data passed in through v, c registers
• Data out through o registers to next stage
• Vertex attribute registers

– v[POS], v[NML],…
– position, normal, …
– Programmer loads data

• Result registers
• Temporary registers
• Constant registers

14

© Kavita Bala, Computer Science, Cornell University

Vertex Program Assembly
• Instructions operate on scalar or 4 vector
• Result is 4 vector or scalar (replicated)

• Examples
– MOV v : Out v
– DP4 v, v: ssss
– Swizzle, .wxyz

• glLoadProgramNV

© Kavita Bala, Computer Science, Cornell University

Shading Languages
• Assembly hard to program

• In 2002, many shading languages
– e.g. Cg from NVIDIA, HLSL in DirectX 9

• Benefits:
– Ease of use
– Hardware independence
– Reusable code

15

© Kavita Bala, Computer Science, Cornell University

Cg Example
Vertout main (… uniform float4 LightVec)
{
vertout Out;
Out.Hposition = …

float 4 light = normalize (LightVec)
float diffuse = dot (normal, light);
…
return Out;
}

© Kavita Bala, Computer Science, Cornell University

What’s New Since 1999
• Vertex Shader
• Pixel/Fragment Shader
• And much faster, of course

– Peak fill rates
– 1999 GeForce256: 0.35 Gigapixel
– 2001 GeForce3: 0.8 Gigapixel
– 2003 GeForceFX Ultra: 2 Gigapixel
– ATI Radeon 9800 Pro : 3 Gigapixel

16

© Kavita Bala, Computer Science, Cornell University

Faster than Moore’s Law

Peak
Performance
(∆'s/sec)

Year

HP CRX
SGI Iris

SGI GT

HP VRX

Stellar GS1000

SGI VGX

HP TVRX

SGI SkyWriter

SGI

E&S
F300

One-pixel polygons (~10M polygons @ 30Hz)

SGI
RE2

RE1
Megatek

86 88 90 92 94 96 98 00
104

105

106

107

108

109

UNC Pxpl4

UNC Pxpl5

UNC/HP PixelFlow

Flat
shading

Gouraud
shading

Antialiasing

Slope ~2.4x/year
(Moore's Law ~ 1.7x/year) SGI

IR E&S
Harmony

SGI
R-Monster

Division VPX

E&S Freedom

Accel/VSIS
Voodoo

Glint

Division
Pxpl6

PC Graphics

Textures

SGI
Cobalt

Nvidia TNT
3DLabs

Graph courtesy of Professor John Poulton

GeForce

104

105

106

107

108

109

ATI
Radeon 256

© Kavita Bala, Computer Science, Cornell University

Programmable GPU Shading

• Multithreaded SIMD organization
• Multiple parallel units
• Same instructions executed on n

vertices or fragments in parallel

17

© Kavita Bala, Computer Science, Cornell University

Performance Issues
• Pipeline: bottleneck analysis

• Parallelism: load balancing

• Memory bandwidth limits
– Texture reads
– Z-Buffering
– Host interface

© Kavita Bala, Computer Science, Cornell University

GPU Parallelism
• GPUs exploit both

– Task parallelism: pipeline
– data (vertex, triangle, fragment) parallelism

Process k triangles in parallel, m fragments in parallel
But, some triangles generate more fragments, some
parts of screen written to more than others

• Various approaches to load balancing
– FIFO buffering

• Pipeline in GeForce3 up to 800 clocks long
(compare to 10-20 on CPUs)

18

© Kavita Bala, Computer Science, Cornell University

Bandwidth

• Bandwidth scales with perimeter
• Computation scales with area
• Memory, buses MUCH slower than internal

processing
• CPUs: use lots and lots and lots of caches

to match memory speeds
• GPUs: exploit streaming computation,

prefetching, block transfers, coherence

© Kavita Bala, Computer Science, Cornell University

Texture Cache
• Prefetch texture block

• Texture data spatially organized to
maximize coherence

• May reorder texture lookups to improve
temporal coherence

19

© Kavita Bala, Computer Science, Cornell University

Current/Future
• Faster

– More parallelism

• More generalized shading languages
– Fewer constraints in programs

© Kavita Bala, Computer Science, Cornell University

Key Hardware Capabilities

• Z-Buffering
• Accumulation Buffer
• Antialiasing
• Transparency/Compositing
• Stencil Buffer
• Filtered Texturing

20

© Kavita Bala, Computer Science, Cornell University

Accumulation Buffer
• Render a scene a number of times, making small

variations
• Blend the results to make a single image.

Effects produced include:
• Antialiasing
• Depth of Field
• Motion Blur
• Soft Shadows

• Needs more precision than ordinary buffers

© Kavita Bala, Computer Science, Cornell University

Accumulation Buffer
Anti-aliasing
Motion Blur
Depth of Field

21

© Kavita Bala, Computer Science, Cornell University

Stereo Buffers
• Render left and right eye views

– Both front and back left and right buffers

• Display hardware alternates frames
• Controls shutter glasses
• May also

– use head or eye tracking
– use head-mounted-display (HMD) and

multiple parallel outputs instead

© Kavita Bala, Computer Science, Cornell University

Stencil Buffers
• 1 to 8 bitplanes

– Usually “leftover” bits in depth buffer
– May need to use 24-bit depth to use

• Stencil test used
– Tests: ==, <, <=, >, >= ref value

• Operations can modify stencil value:
– Ex: increment stencil if passes depth test
– Different ops for fail, zfail, zpass

• Can mask out parts of stencil to modify
• Used for shadow volumes, reflections, etc.

22

© Kavita Bala, Computer Science, Cornell University

Reflections
Planar: flip object through mirror

© Kavita Bala, Computer Science, Cornell University

Reflection & Stencil Buffer

23

© Kavita Bala, Computer Science, Cornell University

Reflection Example - Castle

Agata & Andrzej Wojaczek, Advanced Graphics Applications Inc.

© Kavita Bala, Computer Science, Cornell University

Castle’s Geometry

Agata & Andrzej Wojaczek, Advanced Graphics Applications Inc.

24

© Kavita Bala, Computer Science, Cornell University

P-Buffers
• Permit rendering to off-screen target

– Addresses dimension limitations
– Example, used for shadow maps

• P-buffer in one context can be associated with
texture in another

• ATI Radeon 9700:
– fragment shader can write to up to four output buffers

simultaneously
– potentially useful for multipass algorithms

© Kavita Bala, Computer Science, Cornell University

Key Hardware Capabilities

• Z-Buffering
• Accumulation Buffer
• Antialiasing
• Transparency/Compositing
• Stencil Buffer
• Filtered Texturing

25

© Kavita Bala, Computer Science, Cornell University

Texture Mapping

Images courtesy Tito Pagan

© Kavita Bala, Computer Science, Cornell University

Mipmapping Filtering

26

© Kavita Bala, Computer Science, Cornell University

Fast Texture Map Lookup

• Very powerful feature of hardware
• Most flexible part of graphics hardware

– Surface texturing
– Bump mapping: normals
– Reflection mapping
– Shadow mapping
– Even arbitrary BRDF approximations

• Cheap anti-aliasing & anisotropic filtering

© Kavita Bala, Computer Science, Cornell University

Many types of Texture Maps
• Texture modulates diffuse coefficients in

shading model

• Textures can modulate
– Normals: bump mapping and normal mapping
– Positions: displacement mapping
– Lighting: environment mapping

27

© Kavita Bala, Computer Science, Cornell University

Environment Map
• Want to compute reflections of

environment on surfaces
– Planar surfaces?
– Curved surfaces

• Assumptions:
– Environment Map represents objects at infinity

• Index into EM using reflection vector

© Kavita Bala, Computer Science, Cornell University

Environment Mapping

• EM gives reflections in curved surfaces
– Not very good for flat surfaces

28

© Kavita Bala, Computer Science, Cornell University

Env Map Algorithm
• Generate 2D environment map

– Spherical, cubical, paraboloid

• For each pixel on a reflective object
– Find N on surface of object
– Compute R from V and N: R = V – 2 (N.V) N
– Index into EM using R
– Modulate pixel color

© Kavita Bala, Computer Science, Cornell University

Types of Mappings

Sphere mapping

Cube mapping

