
1

Lecture 14:
Acceleration Structures

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Announcements
• HW 2 is out

• Project discussion will be next week
– Proposals: Oct 26
– Final projects due date

• Exam moved to Nov 11 or Nov 18
(Thursday)?
– Vote

© Kavita Bala, Computer Science, Cornell University

Fewer Ray-Object Intersections
• From O(N) to O(log N)
• How?

– Apply the idea of bounding boxes
hierarchically

– Cluster objects hierarchically
– Single intersection might eliminate cluster

• Bounding volume hierarchy
• Space subdivision

– Octree, Kd-tree, BSP-trees

© Kavita Bala, Computer Science, Cornell University

Bounding Volume Hierarchy
• Hierarchical object bounding volumes
• Spheres, axis-aligned bounding boxes (AABB),

oriented bounding boxes(OBB): fast

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration
• If no intersection, eliminate tests with all

children!

© Kavita Bala, Computer Science, Cornell University

BVH: Construction
• Group objects together

– Top-down: how to split?
– Bottom-up: minimize surface area?

2

© Kavita Bala, Computer Science, Cornell University

Fewer Ray-Object Intersections
• From O(N) to O(log N)

• Bounding volume hierarchy

• Space subdivision
– Octree (Quadtree in 2D)
– Non-uniform (kd-tree)
– BSP-tree

© Kavita Bala, Computer Science, Cornell University

Spatial Hierarchy
• Hierarchical spatial subdivision

– Divides up space
• Children are distinct and cover parent

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration
1. Intersect ray with root: p = root.intersect(ray)

– If no intersection, done
2. Find p in tree (node j = root.find(p))
3. Test ray against elements in node j

– If intersection found, done
– Else find exit point (q) from node j, p = q, goto 2

© Kavita Bala, Computer Science, Cornell University

Octree Properties
• Front to back traversal

© Kavita Bala, Computer Science, Cornell University

Solutions
• Split object

– No repeated intersections and correct
– But, could create lots of little objects

• Use mailboxes
– Store intersection in the object: avoids

repeated intersection
– What about correctness?

Need to check that intersection is in “current”
bounding box

© Kavita Bala, Computer Science, Cornell University

Octree Problems
• Distribution of objects
• Chops up objects

3

© Kavita Bala, Computer Science, Cornell University

K-dimensional (kd) Tree
• Spatial subdivision

– Subdivide only 1 dimension
– Do not subdivide at the center

• Tracing with kd-tree unchanged

© Kavita Bala, Computer Science, Cornell University

Construction
• Which axis to pick?
• What point on the axis to pick?
• One heuristic:

– Sort objects on each axis
– Pick point corresponding to “middle” object
– Pick axis that has “best” distribution of objects
– L = n/2, R = n/2 (ideal)
– Realistically,

minimize (L-R) and
L approx. n/2, R approx. n/2

© Kavita Bala, Computer Science, Cornell University

BSP Tree
• Generalization of kd-trees
• Splitting plane is not axis aligned
• Used in games: DOOM

1
2

3

4

5
7

6

© Kavita Bala, Computer Science, Cornell University

BSP Construction
• Use a polygon to define the splitting plane
• Other objects either split or stored high up

1

1

2 3
3

4

2

5
7

6
54 76

© Kavita Bala, Computer Science, Cornell University

How to construct?
• Least-crossed criterion (random selection

of polygons)
– Do not split many polygons
– Why are polygons split? Depends on use

• Try to make it balanced

© Kavita Bala, Computer Science, Cornell University

BSP Construction
• Top-down
• Input: set of polygons

• Select a partition plane
– Ax + By + Cz + D = 0

• Partition the set of polygons with the plane
• Recurse on both new sets

4

© Kavita Bala, Computer Science, Cornell University

BSP Traversal
• Front to back ordering
• BSP traversal similar to kd-tree

1

1

2 3
3

4

2

5
7

6
54 76

V

© Kavita Bala, Computer Science, Cornell University

Other acceleration structures
• Axis-aligned BSP for coherent ray tracing:

same as our kd-tree

© Kavita Bala, Computer Science, Cornell University

Uniform Grid
• Ray marching is trivial (additions)
• But, lots of cells (potentially empty)
• Bad for bi-modal distributions

© Kavita Bala, Computer Science, Cornell University

Bounding Volume vs. Spatial Hierarchy
• Object subdivision

– Hierarchical object
representation

– Hierarchically cluster
objects

• Siblings could overlap
• Object in single leaf
• Ray marches down
• AABB,OBB,Spheres

• Spatial subdivision
– Hierarchical spatial

representation
– Hierarchically cluster

space
• Siblings distinct
• Object in >1 leaf (higher)

• Ray marches across
• Octree,kd-tree,Grid

© Kavita Bala, Computer Science, Cornell University

Fewer Ray/Object Intersections

• Issues with hierarchical data structures:
– Does it take long to initialize?
– Does it require a lot of memory?
– Is it as efficient for shadow and secondary

rays as for view rays?
– Can it accommodate time-varying data?

© Kavita Bala, Computer Science, Cornell University

Using Acceleration Structures
• Acceleration structures for:

– Ray tracing
– Visibility determination

Culling: hardware and software
– Point finding
– Collision detection

5

© Kavita Bala, Computer Science, Cornell University

Photon Maps
• Find n closest photons

© Kavita Bala, Computer Science, Cornell University

Photon Maps: Balanced kd-tree

• Find n closest photons
• Balanced kd-tree for photon maps

– Points (photons) as nodes
Compact

– Balanced: implicit structure
Child of node i is 2i and 2i+1

– Search: Same as before

© Kavita Bala, Computer Science, Cornell University

Edge-and-point Rendering

• Kd-tree for edge-and-point rendering to find
silhouettes and shadows

• How to efficiently find silhouette and
shadow discontinuities in complex scenes
made of polygon meshes?

© Kavita Bala, Computer Science, Cornell University

Silhouettes

N1·V > 0 (forward facing)
N2·V < 0 (backward facing)

V

N2
N1

objecteye

© Kavita Bala, Computer Science, Cornell University

Umbral and Penumbral Conditions

• Event plane tangential to light and blocker
L·Nblocker = L·Nlight = 0
Nlight·Nblocker = 1 (umbral), -1 (penumbral)

Nlight

Nblocker

umbral penumbral

Nlight
Nblocker

L L

© Kavita Bala, Computer Science, Cornell University

Normal–Position Tree
• Novel data structure similar to bounding-

volume hierarchy

• Node represents a set of object polygons:
stores boxes for normals and positions
– Position interval: [x0, x1]×[y0, y1]×[z0, z1]
– Can be computed efficiently

• Equations (e.g., L·Nblocker = 0) evaluated
conservatively using interval arithmetic

6

© Kavita Bala, Computer Science, Cornell University

• Fast traversal with interval evaluation of
formulas

• Efficient shadow event computation with non-
convex objects and area lights

Tree Traversal

S1

eye or
point light

S0

© Kavita Bala, Computer Science, Cornell University

Culling of Complex Scenes
• Remove geometry that is not visible … cull

it away
– View Frustum Culling
– Hierarchical z-buffer
– Cell-portal visibility
– Many others….

© Kavita Bala, Computer Science, Cornell University

View Frustum Culling
• Construct view frustum

– 6 plans

• Test objects in scene against frustum
– Cull them if they do not lie in frustum

• Complexity: O(n)
– So what’s the point?

© Kavita Bala, Computer Science, Cornell University

Hierarchical View Frustum Culling
• Use an octree/BVH

• Start at o = root of octree/BVH
• Test(Node o) {

– Check 6 planes of frustum for intersection with
bbox(o)

– If in or out, terminate testing
– If it intersects

For each child c = child[i], Test (c)

© Kavita Bala, Computer Science, Cornell University

Example

root

camera
© Kavita Bala, Computer Science, Cornell University

Occlusion Culling
• Occlusion Culling/Visibility Culling
• Don’t send all polygons to hardware

– Remove polygons that are not visible
– Conservative: find visible superset

7

© Kavita Bala, Computer Science, Cornell University

Occlusion Culling
• On-line

– Remove geometry on-the-fly

• Off-line
– Determine potentially visible set (PVS)
– When rendering only display PVS

© Kavita Bala, Computer Science, Cornell University

Hierarchical Z-buffer
• On-line
• Use nearby polygons to remove far

polygons
• Construct an octree subdivision of scene

– Could use other data structures as well

© Kavita Bala, Computer Science, Cornell University

How Hierarchical Z-buffer works
• When rendering:

– Traverse octree from front to back
Enumeration order of octree cells can be
determined by ray direction

• Test z-value in z-buffer against octree cell
• Consider cell b from octree
• Let b project to pixels p0, …, pn
• If pi.z < b.Minz Eliminate octree cell
• Else recurse

© Kavita Bala, Computer Science, Cornell University

Hierarchical
• Have to do it for every pixel

– Too slow

• Instead do it for a quadtree subdivision of
z-buffer
– Check if the whole square of pixels is in front

of the box b

