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Lecture 14:
Acceleration Structures

Fall 2004
Kavita Bala

Computer Science
Cornell University
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Announcements
• HW 2 is out

• Project discussion will be next week
– Proposals: Oct 26
– Final projects due date

• Exam moved to Nov 11 or Nov 18 
(Thursday)?
– Vote
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Fewer Ray-Object Intersections
• From O(N) to O(log N)
• How?

– Apply the idea of bounding boxes 
hierarchically

– Cluster objects hierarchically
– Single intersection might eliminate cluster

• Bounding volume hierarchy
• Space subdivision

– Octree, Kd-tree, BSP-trees
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Bounding Volume Hierarchy
• Hierarchical object bounding volumes
• Spheres, axis-aligned bounding boxes (AABB), 

oriented bounding boxes(OBB): fast
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Intersection Acceleration
• If no intersection, eliminate tests with all 

children!
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BVH: Construction
• Group objects together

– Top-down: how to split?
– Bottom-up: minimize surface area?
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Fewer Ray-Object Intersections
• From O(N) to O(log N)

• Bounding volume hierarchy

• Space subdivision
– Octree (Quadtree in 2D)
– Non-uniform (kd-tree)
– BSP-tree
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Spatial Hierarchy
• Hierarchical spatial subdivision

– Divides up space
• Children are distinct and cover parent
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Intersection Acceleration
1. Intersect ray with root: p = root.intersect(ray)

– If no intersection, done
2. Find p in tree (node j = root.find(p))
3. Test ray against elements in node j

– If intersection found, done
– Else find exit point (q) from node j, p = q, goto 2

© Kavita Bala, Computer Science, Cornell University

Octree Properties
• Front to back traversal
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Solutions
• Split object

– No repeated intersections and correct
– But, could create lots of little objects

• Use mailboxes
– Store intersection in the object: avoids 

repeated intersection
– What about correctness? 

Need to check that intersection is in “current” 
bounding box
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Octree Problems
• Distribution of objects
• Chops up objects
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K-dimensional (kd) Tree
• Spatial subdivision

– Subdivide only 1 dimension
– Do not subdivide at the center

• Tracing with kd-tree unchanged
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Construction
• Which axis to pick? 
• What point on the axis to pick?
• One heuristic:

– Sort objects on each axis
– Pick point corresponding to “middle” object
– Pick axis that has “best” distribution of objects
– L = n/2, R = n/2 (ideal)
– Realistically, 

minimize (L-R) and
L approx. n/2, R approx. n/2
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BSP Tree
• Generalization of kd-trees
• Splitting plane is not axis aligned
• Used in games: DOOM
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BSP Construction
• Use a polygon to define the splitting plane
• Other objects either split or stored high up
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How to construct?
• Least-crossed criterion (random selection 

of polygons)
– Do not split many polygons
– Why are polygons split? Depends on use

• Try to make it balanced
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BSP Construction
• Top-down
• Input: set of polygons

• Select a partition plane
– Ax + By + Cz + D = 0

• Partition the set of polygons with the plane
• Recurse on both new sets
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BSP Traversal
• Front to back ordering
• BSP traversal similar to kd-tree
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Other acceleration structures
• Axis-aligned BSP for coherent ray tracing: 

same as our kd-tree
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Uniform Grid
• Ray marching is trivial (additions)
• But, lots of cells (potentially empty)
• Bad for bi-modal distributions
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Bounding Volume vs. Spatial Hierarchy
• Object subdivision

– Hierarchical object 
representation

– Hierarchically cluster 
objects

• Siblings could overlap
• Object in single leaf
• Ray marches down
• AABB,OBB,Spheres

• Spatial subdivision
– Hierarchical spatial 

representation
– Hierarchically cluster 

space
• Siblings distinct
• Object in >1 leaf (higher)

• Ray marches across 
• Octree,kd-tree,Grid
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Fewer Ray/Object Intersections

• Issues with hierarchical data structures:
– Does it take long to initialize?
– Does it require a lot of memory? 
– Is it as efficient for shadow and secondary 

rays as for view rays?
– Can it accommodate time-varying data?
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Using Acceleration Structures
• Acceleration structures for:

– Ray tracing
– Visibility determination

Culling: hardware and software
– Point finding
– Collision detection
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Photon Maps
• Find n closest photons
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Photon Maps: Balanced kd-tree

• Find n closest photons
• Balanced kd-tree for photon maps

– Points (photons) as nodes
Compact

– Balanced: implicit structure
Child of node i is 2i and 2i+1

– Search: Same as before
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Edge-and-point Rendering

• Kd-tree for edge-and-point rendering to find 
silhouettes and shadows

• How to efficiently find silhouette and 
shadow discontinuities in complex scenes 
made of polygon meshes?
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Silhouettes

N1·V > 0 (forward facing)
N2·V < 0 (backward facing)

V
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objecteye
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Umbral and Penumbral Conditions

• Event plane tangential to light and blocker
L·Nblocker = L·Nlight = 0
Nlight·Nblocker = 1 (umbral), -1 (penumbral)

Nlight

Nblocker

umbral penumbral

Nlight
Nblocker

L L
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Normal–Position Tree
• Novel data structure similar to bounding-

volume hierarchy

• Node represents a set of object polygons: 
stores boxes for normals and positions
– Position interval: [x0, x1]×[y0, y1]×[z0, z1]
– Can be computed efficiently

• Equations (e.g.,  L·Nblocker = 0) evaluated 
conservatively using interval arithmetic
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• Fast traversal with interval evaluation of 
formulas

• Efficient shadow event computation with non-
convex objects and area lights

Tree Traversal

S1

eye or
point light

S0
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Culling of Complex Scenes
• Remove geometry that is not visible … cull 

it away
– View Frustum Culling
– Hierarchical z-buffer
– Cell-portal visibility
– Many others….
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View Frustum Culling
• Construct view frustum

– 6 plans

• Test objects in scene against frustum
– Cull them if they do not lie in frustum

• Complexity: O(n)
– So what’s the point?
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Hierarchical View Frustum Culling
• Use an octree/BVH

• Start at o = root of  octree/BVH 
• Test(Node o) {

– Check 6 planes of frustum for intersection with 
bbox(o)

– If in or out, terminate testing
– If it intersects

For each child c = child[i], Test (c)
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Example

root

camera
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Occlusion Culling
• Occlusion Culling/Visibility Culling
• Don’t send all polygons to hardware

– Remove polygons that are not visible
– Conservative: find visible superset
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Occlusion Culling
• On-line

– Remove geometry on-the-fly

• Off-line
– Determine potentially visible set (PVS)
– When rendering only display PVS
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Hierarchical Z-buffer
• On-line
• Use nearby polygons to remove far 

polygons
• Construct an octree subdivision of scene

– Could use other data structures as well 
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How Hierarchical Z-buffer works
• When rendering:

– Traverse octree from front to back
Enumeration order of octree cells can be 
determined by ray direction

• Test z-value in z-buffer against octree cell
• Consider cell b from octree
• Let b project to pixels p0, …, pn
• If pi.z < b.Minz Eliminate octree cell
• Else recurse
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Hierarchical
• Have to do it for every pixel

– Too slow

• Instead do it for a quadtree subdivision of 
z-buffer
– Check if the whole square of pixels is in front 

of the box b


