
1

Lecture 13:
Acceleration Structures

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Making RT faster

Ray Tracing 
Acceleration
Techniques

Faster Intersections

Fewer Rays

Faster Ray-Object
Intersections

Fewer Ray-Object
Intersections

Regular Rays

Generalized Rays•For each pixel, O(N) 

•For each light, k shadow rays

•For GI and antialiasing: many rays per pixel

© Kavita Bala, Computer Science, Cornell University

Faster Ray-Object Intersections
• Object bounding volumes

• Avoid intersection tests for expensive 
objects: e.g., polygon sets, spline surfaces
– Ray/sphere or ray/cuboid test is fast

© Kavita Bala, Computer Science, Cornell University

Tight Fit to Bounding Volume

© Kavita Bala, Computer Science, Cornell University

Fewer Ray-Object Intersections
• From O(N) to O(log N)
• How?

– Apply the idea of bounding boxes 
hierarchically

– Cluster objects hierarchically
– Single intersection might eliminate cluster

• Bounding volume hierarchy
• Space subdivision

– Octree, Kd-tree, BSP-trees

© Kavita Bala, Computer Science, Cornell University

Bounding Volume Hierarchy
• Hierarchical object bounding volumes
• Spheres, axis-aligned bounding boxes (AABB), 

oriented bounding boxes(OBB): fast



2

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

• Trace ray against root node
• If ray intersects node

– Trace ray against ALL children (Recurse)

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration
• Trace ray against root node
• If ray intersects node

– Trace ray against ALL children (Recurse)

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration
• If no intersection, eliminate tests with all 

children!

© Kavita Bala, Computer Science, Cornell University

BVH: Construction
• Group objects together

– Top-down: how to split?
– Bottom-up: minimize surface area?

© Kavita Bala, Computer Science, Cornell University

BVH: Construction
• Group objects together

– Top-down: how to split?
– Bottom-up: minimize surface area?

© Kavita Bala, Computer Science, Cornell University

Fewer Ray-Object Intersections
• From O(N) to O(log N)

• Bounding volume hierarchy

• Space subdivision
– Octree (Quadtree in 2D)
– Non-uniform (kd-tree)
– BSP-tree



3

© Kavita Bala, Computer Science, Cornell University

Spatial Hierarchy
• Hierarchical spatial subdivision

– Divides up space
• Children are distinct and cover parent

© Kavita Bala, Computer Science, Cornell University

Construction
• Maximum depth
• Maximum number of elements in leaf

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration



4

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration
1. Intersect ray with root: p = root.intersect(ray)

– If no intersection, done
2. Find p in tree (node j = root.find(p))
3. Test ray against elements in node j

– If intersection found, done
– Else find exit point (q) from node j, p = q, goto 2

© Kavita Bala, Computer Science, Cornell University

Octree Properties
• Front to back traversal
• Problem: Same object in multiple cells

– Split object
– Could repeatedly intersect: use mailboxes

© Kavita Bala, Computer Science, Cornell University

Solutions
• Split object

– No repeated intersections and correct
– But, could create lots of little objects

• Use mailboxes
– Store intersection in the object: avoids 

repeated intersection
– What about correctness? 

Need to check that intersection is in “current” 
bounding box

© Kavita Bala, Computer Science, Cornell University

Octree Problems
• Distribution of objects
• Chops up objects

© Kavita Bala, Computer Science, Cornell University

K-dimensional (kd) Tree
• Spatial subdivision

– Subdivide only 1 dimension
– Do not subdivide at the center

• Tracing with kd-tree unchanged



5

© Kavita Bala, Computer Science, Cornell University

Construction
• Which axis to pick? 
• What point on the axis to pick?
• One heuristic:

– Sort objects on each axis
– Pick point corresponding to “middle” object
– Pick axis that has “best” distribution of objects
– L = n/2, R = n/2 (ideal)
– Realistically, 

minimize (L-R) and
L approx. n/2, R approx. n/2

© Kavita Bala, Computer Science, Cornell University

BSP Tree
• Generalization of kd-trees
• Splitting plane is not axis aligned
• Used in games: DOOM

1
2

3

4

5
7

6

© Kavita Bala, Computer Science, Cornell University

BSP Construction
• Use a polygon to define the splitting plane
• Other objects either split or stored high up

1

1

2 3
3

4

2

5
7

6
54 76

© Kavita Bala, Computer Science, Cornell University

How to construct?
• Least-crossed criterion (random selection 

of polygons)
– Do not split many polygons

• Try to make it balanced

© Kavita Bala, Computer Science, Cornell University

BSP Traversal
• Front to back ordering
• Strict occlusion order (not closest object)

1

1

2 3
3

4

2

5
7

6
54 76

V


