Lecture 13:
Acceleration Structures

Fall 2004

Kavita Bala
Computer Science

Cornell University

Making RT faster

Faster Intersections

Ray Tracing /

Acceleration
Techniques \
Fewer Rays

«For each pixel, O(N) _

*For each light, k shadow rays

*For Gl and antialiasing: many rays per pixel

© Kavita Bala, Computer Science, Cornell University

Faster Ray-Object Intersections

» Object bounding volumes

» Avoid intersection tests for expensive
objects: e.g., polygon sets, spline surfaces
— Ray/sphere or ray/cuboid test is fast

© Kavita Bala, Computer Science, Cornell University

Tight Fit to Bounding Volume

© Kavita Bala, Computer Science, Cornell University

Fewer Ray-Object Intersections

From O(N) to O(log N)
How?

— Apply the idea of bounding boxes
hierarchically

— Cluster objects hierarchically
— Single intersection might eliminate cluster

Bounding volume hierarchy

Space subdivision
— Octree, Kd-tree, BSP-trees

© Kavita Bala, Computer Science, Cornell University

Bounding Volume Hierarchy

 Hierarchical object bounding volumes

* Spheres, axis-aligned bounding boxes (AABB),
oriented bounding boxes(OBB): fast

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

» Trace ray against root node

« If ray intersects node
— Trace ray against ALL children (Recurse)

X n

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

« Trace ray against root node

* If ray intersects node
— Trace ray against ALL children (Recurse)

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

 If no intersection, eliminate tests with all
children!

)
y

© Kavita Bala, Computer Science, Cornell University

BVH: Construction

» Group objects together
— Top-down: how to split?
— Bottom-up: minimize surface area?

© Kavita Bala, Computer Science, Cornell University

BVH: Construction

» Group objects together
— Top-down: how to split?
— Bottom-up: minimize surface area?

T B

2
@‘é

© Kavita Bala, Computer Science, Cornell University

Fewer Ray-Object Intersections

* From O(N) to O(log N)

« Bounding volume hierarchy

» Space subdivision
— Octree (Quadtree in 2D)
— Non-uniform (kd-tree)
— BSP-tree

© Kavita Bala, Computer Science, Cornell University

Spatial Hierarchy

 Hierarchical spatial subdivision
— Divides up space
» Children are distinct and cover parent

%

%W I i@

2N

nd

© Kavita Bala, Computer Science, Cornell University

Construction

* Maximum depth
 Maximum number of elements in leaf

%

%ﬁtf

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

LYY —h—
A S m
= ,',”;
i
Sl
A
)7

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

Y3
74
=
®

o
y

" &S
\ |

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

1§n7;v)—\l
B B o S

QR
>
- Q
z T7)
o Ry

© Kavita Bala, Computer Science, Cornell University

Intersection Acceleration

1. Intersect ray with root: p = root.intersect(ray)
— If no intersection, done

2. Find p in tree (node j = root.find(p))

3. Test ray against elements in node |

— If intersection found, done
— Else find exit point (q) from node j, p = q, goto 2

© Kavita Bala, Computer Science, Cornell University

Octree Properties

* Front to back traversal

» Problem: Same object in multiple cells
— Split object
— Could repeatedly intersect: use mailboxes

7
Vy,}'
77

'\gﬂ/n—m
N e (A 4

© Kavita Bala, Computer Science, Cornell University

Solutions

» Split object
— No repeated intersections and correct
— But, could create lots of little objects

* Use mailboxes

— Store intersection in the object: avoids
repeated intersection

— What about correctness?

= Need to check that intersection is in “current”
bounding box

© Kavita Bala, Computer Science, Cornell University

Octree Problems

« Distribution of objects
» Chops up objects

© Kavita Bala, Computer Science, Cornell University

K-dimensional (kd) Tree

» Spatial subdivision

— Subdivide only 1 dimension

— Do not subdivide at the center
« Tracing with kd-tree unchanged

arhell Lniversity

Construction

» Which axis to pick?
* What point on the axis to pick?

* One heuiristic:
— Sort objects on each axis
— Pick point corresponding to “middle” object
— Pick axis that has “best” distribution of objects
—L =n/2, R =n/2 (ideal)
— Realistically,
* minimize (L-R) and
= L approx. n/2, R approx. n/2

© Kavita Bala, Computer Science, Cornell University

BSP Tree

» Generalization of kd-trees
 Splitting plane is not axis aligned
» Used in games: DOOM

;
,
,
,
,
,
,
,
,
,
A
AN
A ~
N
N
N
’ 2
N
\ ' \
N
N // ‘\
b3 N
;] N
v \\
4 N
v 4 N
, N
N
A

,
/,
/
/
/
/
/
/
,
/

© Kavita Bala, Computer Science, Cornell University

BSP Construction

» Use a polygon to define the splitting plane
» Other objects either split or stored high up

T (0
3 1/
N/ \2\ A é

© Kavita Bala, Computer Science, Cornell University

How to construct?

 Least-crossed criterion (random selection
of polygons)
— Do not split many polygons

* Try to make it balanced

© Kavita Bala, Computer Science, Cornell University

BSP Traversal

* Front to back ordering
» Strict occlusion order (not closest object)

@/@gé
N PN

© Kavita Bala, Computer Science, Cornell University

