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Making RT faster

Faster Intersections

Ray Tracing /

Acceleration
Techniques \
Fewer Rays

«For each pixel, O(N) \_

*For each light, k shadow rays

*For Gl and antialiasing: many rays per pixel
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Faster Ray-Object Intersections

» Object bounding volumes

» Avoid intersection tests for expensive
objects: e.g., polygon sets, spline surfaces
— Ray/sphere or ray/cuboid test is fast
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Tight Fit to Bounding Volume
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Fewer Ray-Object Intersections

From O(N) to O(log N)
How?

— Apply the idea of bounding boxes
hierarchically

— Cluster objects hierarchically
— Single intersection might eliminate cluster

Bounding volume hierarchy

Space subdivision
— Octree, Kd-tree, BSP-trees
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Bounding Volume Hierarchy

 Hierarchical object bounding volumes

* Spheres, axis-aligned bounding boxes (AABB),
oriented bounding boxes(OBB): fast
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Intersection Acceleration

» Trace ray against root node

« If ray intersects node
— Trace ray against ALL children (Recurse)
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Intersection Acceleration

« Trace ray against root node

* If ray intersects node
— Trace ray against ALL children (Recurse)
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Intersection Acceleration

 If no intersection, eliminate tests with all
children!
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BVH: Construction

» Group objects together
— Top-down: how to split?
— Bottom-up: minimize surface area?
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BVH: Construction

» Group objects together
— Top-down: how to split?
— Bottom-up: minimize surface area?
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Fewer Ray-Object Intersections

* From O(N) to O(log N)

« Bounding volume hierarchy

» Space subdivision
— Octree (Quadtree in 2D)
— Non-uniform (kd-tree)
— BSP-tree
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Spatial Hierarchy

 Hierarchical spatial subdivision
— Divides up space
» Children are distinct and cover parent
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Construction

* Maximum depth
 Maximum number of elements in leaf
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Intersection Acceleration
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Intersection Acceleration
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Intersection Acceleration
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Intersection Acceleration
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Intersection Acceleration
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Intersection Acceleration

1. Intersect ray with root: p = root.intersect(ray)
— If no intersection, done

2. Find p in tree (node j = root.find(p))

3. Test ray against elements in node |

— If intersection found, done
— Else find exit point (q) from node j, p = q, goto 2
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Octree Properties

* Front to back traversal

» Problem: Same object in multiple cells
— Split object
— Could repeatedly intersect: use mailboxes
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Solutions

» Split object
— No repeated intersections and correct
— But, could create lots of little objects

* Use mailboxes

— Store intersection in the object: avoids
repeated intersection

— What about correctness?

= Need to check that intersection is in “current”
bounding box
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Octree Problems

« Distribution of objects
» Chops up objects
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K-dimensional (kd) Tree

» Spatial subdivision

— Subdivide only 1 dimension

— Do not subdivide at the center
« Tracing with kd-tree unchanged
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Construction

» Which axis to pick?
* What point on the axis to pick?

* One heuiristic:
— Sort objects on each axis
— Pick point corresponding to “middle” object
— Pick axis that has “best” distribution of objects
—L =n/2, R =n/2 (ideal)
— Realistically,
* minimize (L-R) and
= L approx. n/2, R approx. n/2
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BSP Tree

» Generalization of kd-trees
 Splitting plane is not axis aligned
» Used in games: DOOM
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BSP Construction

» Use a polygon to define the splitting plane
» Other objects either split or stored high up
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How to construct?

 Least-crossed criterion (random selection
of polygons)
— Do not split many polygons

* Try to make it balanced
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BSP Traversal

* Front to back ordering
» Strict occlusion order (not closest object)
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