Lecture 12: Interactive Ray
Tracing and
Acceleration Structures

Fall 2004

Kavita Bala
Computer Science

Cornell University

HW 1

« Add whatever you need to
— Get color in the materials
— Diffuse, etc.

* Only direct lighting
* Only hard shadows

» So why spheres? So that radiosity/radiance
conversions etc. work out.

© Kavita Bala, Computer Science, Cornell University

Interactive Software Rendering

* Interactive
— User-driven, not pre-scripted animation
— At least a few frames per second (fps)
» Software

— Major shading done in software
= Can use hardware to help

* Rendering

— Online, not pre-computed or captured
» Eg, lightfields are pre-computed

© Kavita Bala, Computer Science, Cornell University

Why Software Rendering?

Global lllumination: Non-local information

Extremely high complexity

Arbitrary shading models

Portability
— No tweaking: just works
— No scene dependent optimizations

© Kavita Bala, Computer Science, Cornell University

Performance Results |l

« Comparison to Rasterization-Hardware
— Ray tracing scales well for large environments

0.7

06

05

04}

frame

@
w
02 fF

© Kavita Bala, Computer Science, Cornell University

Rendering as Sampling

» Ray tracers compute radiance at each pixel

radiance

N

* Rendering = Sampling radiance

pixel number

© Kavita Bala, Computer Science, Cornell University

Coherence

» Within one frame: spatial coherence

Frame 1
radiance Frame 2

=

pixel number

» Across many frames: temporal coherence

© Kavita Bala, Computer Science, Cornell University

Strategy

* Insight: radiance is mostly smooth -- use
sparse sampling and reconstruction

radiance peak

smooth discontinuity

» Radiance samples are very expensive
» Goal: reconstruct most pixels by interpolation
* Issues: discontinuities, non-linear variations

© Kavita Bala, Computer Science, Cornell University

Modified Visual Feedback Loop

Renderer

Asynchronous
interface

© Kavita Bala, Computer Science, Cornell University

Display Process

« Automatically exploit spatial and temporal
coherence

» Layered on top of an existing (slow) global
illumination renderer

* Provide interactive performance

© Kavita Bala, Computer Science, Cornell University

Aside: Frameless Rendering

« Update pixels as they are computed
— Don’t wait for full frame to finish

© Kavita Bala, Computer Science, Cornell University

Frameless Rendering

00

Frgute 1. The bottom towr shonrs 7 famesof a 15 Hr fmmeless tendedng sequence weith 33% of the pixels
updated in each fmme. The middle o shomes 3 frmes of a double- buffeting sequence wpdatedat 5 Hr.

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches

* 4D:
— Radiance Interpolants
— Holodeck

» 2D: Image based
— Post-rendering Warp
— Render Cache
— Edge and Point Rendering
— Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Post-Rendering 3D Warp

* Render subset of frames
— E.g, every 6th frame is rendered

« Use standard image warping techniques to
compute the other frames

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

« Goal: Want image at new viewpoint
» Reproject points from input images

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

Assume have depth/disparity per pixel
If pixel (x,y) sees point P,

. P=C+tD

C is camera position,

D is direction from C through (x:y)/'
t is distance along D P

D (x,y)

Camera C

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

* Direction D

D=C+xi+yj+dk

(x,y) = pixel

e C = camera center
 d = distance of image plane from C
 C, d are known

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

P =Cy + t5 Do(Xx,Y)
Co+tyDy=Cy +t,D,
tyDy=(Co-Cy) + 1, Dy

D 1 (xy)
Camera C, New Camera C,
Co» C4, Dy, ty are known

t, D, defines the reprojected pixel

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

* Dy =Ci+xqityjrdik

 Solve for x4, y; and t, .
\

D (x45¥4)

Camera C, New Camera C,

© Kavita Bala, Computer Science, Cornell University

Post-Rendering 3D Warp

* Problem:

Pixels do not project to pixel centers
Multiple pixels project to same pixel in new view
Holes and missing data

4

Reference frame Warped frame
The camera is moving to the left in this example.

© Kavita Bala, Computer Science, Cornell University

How to fill holes?

Warp from both past and future reference
frames

— Heuristics for combining pixel results

Prior reference Warped frame Next reference

© Kavita Bala, Computer Science, Cornell University

Problem: Post-Rendering Warp

Must predict the locations of future frames

— Longer predictions become rapidly less
accurate

— Camera path

© Warped frames

@ Predicted frames

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches

* 4D:
— Radiance Interpolants
— Holodeck

» 2D: Image based
— Post-rendering Warp
— Render Cache
— Edge and Point Rendering
— Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Render Cache (Walter et al.)

Interactivity is important
— Maintain relatively constant framerate
= eg., >5fps
— Degrade gracefully as rendering becomes more
expensive

Cache shaded pixels as 3D colored points
Render new image

— Project points onto current image plane

— Filter to reduce artifacts

Prioritize future rendering

— |dentify problem pixels

— Sparse sampling for limited render budget

© Kavita Bala, Computer Science, Cornell University

Approach

» Data: Cloud of unordered points with:
— 3D position,color, age, object id

» Approach: reproject points into image plane
— Occlusion errors, holes in data

Initial view After reprojectio

© Kavita Bala, Computer Science, Cornell University

Image Estimation

» Depth cull heuristic

— Problem: occluded points may be visible
» Z-buffering only works within a pixel
— Clean up using nearby depth information

* Interpolate 3x3

Raw projection depth cull interpolation

© Kavita Bala, Computer Science, Cornell University

Sampling

» Choose pixels for rendering: sparse
sampling

» Requested pixels sent to renderer(s)

— Results returned at some later frame

Displayed image Priority image Requested pixels

© Kavita Bala, Computer Science, Cornell University

Render Cache Adv and Limitations

* Improved interactivity
* Independent display process
» Drawback: pixel artifacts

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches

* 4D:
— Radiance Interpolants
— Holodeck

» 2D: Image based
— Post-rendering Warp
— Render Cache
— Edge and Point Rendering
— Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Edge-and-Point [Bala’03]

» Goal: Interactive high-quality rendering
— Expensive shading: e.g., global illumination
— But, mostly smooth (coherent)

© Kavita Bala, Computer Science, Cornell University

Edge-and-Point Motivation: Performance

 Discontinuities are perceptually important
— Artifacts are disturbing

" n

* Finding discontinuities by sampling
is expensive

© Kavita Bala, Computer Science, Cornell University

Edge-and-Point Rendering

Edges: important discontinuities
— Silhouettes and shadows

Points: sparse shading samples

edge-and-point,
reconstruction Yar.

mputer Science, Cornell University

Edge-and-Point Image
 Alternative display representation

» Edge-constrained interpolation preserves
sharp features

 Fast anti-aliasing

x 4
. AN

© Kavita Bala, Compute

System

3D points -

|
2D points E*pmits

Decou cﬁ?ﬁ%‘i’m'
shadw?g. ere

from |

3D edges

2D edges

Asynchronous

©Ke S Sre, Cornell University

Silhouettes

_ath,
_

eye &N

N
e . = 2
B object _

N,V > 0 (forward facing)
N,-V < 0 (backward facing)

© Kavita Bala, Computer Science, Cornell University

Shadows: Hard and Soft

point light source

area light source

—
‘ umbral
penumbral

event
event

blocker

receiver receiver
Hard shadows

Soft shadows

© Kavita Bala, Computer Science, Cornell University

Umbra and Penumbra Conditions

Nlight

N

N Nlight blocker

blocker

L

umbral penumbral

« Event plane tangential to light and blocker
L-Npiocker = L'Nijignt = 0
Niight'Nblocker = 1 (Umbral), -1 (penumbral)

© Kavita Bala, Computer Science, Cornell University

Edge Finding

 Hierarchical trees: fast edge finding
— Interval-based

) NNEAGNTIAAD
,);,x" /_\ﬁ\‘"‘f i ./|\; ’")\y
;\n V%ﬁ-{\/&/\
?/?/;/\/\% \;/// }7\
;&\7 B AN ‘/
;,’;,\fi} \{’"@
K}‘ :. S‘”“j\ 1 [5/\ \\

S E7 2R)

© Kavita Bala, Computer Science, Cornell University

Soft Shadow Edges

Black: silhouettes,
Red: umbral edges, Blue: penumbral edges

© Kavita Bala, Computer Science, Cornell University

Pixel types

 Pixels can have arbitrary edge complexity
 Classify pixels into 3 groups

— Empty: no edges

— Simple: can be approximated by 1 edge

— Complex: everything else

Empty Simple Complex
— Typical pixel classification statistics
= empty (85-95%), simple (4-10%), complex (1-4%)

© Kavita Bala, Computer Science, Cornell University

Edge-and-Point Image (EPI)

» Goal: compact and fast

— Store at most one edge
and one point per pixel

— Limited sub-pixel
precision

Point sample
(shaded)

Edge

EPI pixel

« Combine edges and points in image space
— View-driven, lazy evaluation

© Kavita Bala, Computer Science, Cornell University

Reachability

* Reachable samples
— Pixel's 5x5 neighborhood
— Connected without crossing any edges (or
complex pixels)

» Propagated outward from each pixel

O Reachable

© Unreachable

Propagation

© Kavita Bala, Computer Science, Cornell University

Results: Quality

* Global
illumination

. 3 lights

« 150k polygons

Without Edges With Edges

© Kavita Bala, Computer Science, Cornell University

Tea Stand T
* Global illumination '
.

‘Y

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches

* 4D:
— Radiance Interpolants
— Holodeck

» 2D: Image based
— Post-rendering Warp
— Render Cache
— Edge and Point Rendering
— Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing

« Start with a standard hardware rendering
of scene
— Graphics hardware very good at interactive
display
— Start with a radiosity solution
« Compare to underlying renderer
— Apply corrections where they differ
— Corrections applied as projective textures

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing

Radiosity Corrected Corrective
solution image texture

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing

» Sparse rendered samples compared to
hardware displayed results
— Differences splatted into textures

— More samples generated near points which
had large differences

— Samples which are likely to have changed are
deprecated so that can be overwritten by
future results

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing

Corrective textures
are dynamically
assigned to objects

© Kavita Bala, Computer Science, Cornell University

Comparison
Target renderer Typical
speed Sparseness ratio frame rates
Warp <lIs 4-10 20 - 60 fps
Corrective Tex. 20 -200s 250 - 1000 5-10 fps
RC 5-10s 8 —100 10 - 20 fps
EPI 5-10s 8-100 10 - 20 fps

© Kavita Bala, Computer Science, Cornell University

Comparison

Hardware Independent of =~ Moving Quality
accelerated scene complexity objects
Warp No Yes No ?
Corrective Tex. Yes No No Not really,
RC No Yes Yes No
EPI Yes Yes Yes Yes

© Kavita Bala, Computer Science, Cornell University

Prediction

* Hardware
— Speed
— Programmability

» Software
— High-complexity data sets
— Complex Gl

» Hybrid techniques

© Kavita Bala, Computer Science, Cornell University

Dealing with High Complexity

Many Lights
Display systems
— Point-based approaches

Visibility pre-processing systems

Image-Based Rendering

© Kavita Bala, Computer Science, Cornell University

Acceleration Data Structures

CS 665

Making RT faster

Faster Intersections

Acceleration

Fewer Rays

*For each pixel, O(N) _

*For each light, k shadow rays

*For Gl and antialiasing: many rays per pixel

© Kavita Bala, Computer Science, Cornell University

Fewer Rays: Regular Rays

* Regular rays
— Adaptive tree-depth control
— Adaptive antialiasing

o }Q

K, . K. K,. Shading / /
5/

© Kavita Bala, Computer Science, Cornell University

Generalized Rays

» Generalized rays represent a set of rays
— Cone
— Beam
* Pros
— Good for anti-aliasing
— Decreases number of rays
« Cons
— More complex intersection tests
— Reflections and refractions get hairy

© Kavita Bala, Computer Science, Cornell University

Making RT faster

Faster Intersections

Acceleration

Fewer Rays

© Kavita Bala, Computer Science, Cornell University

Faster Ray-Object Intersections

» Object bounding volumes

» Avoid intersection tests for expensive
objects: e.g., polygon sets, spline surfaces
— Ray/sphere or ray/cuboid test is fast

© Kavita Bala, Computer Science, Cornell University

Intersection: sphere

Assume sphere x2 + y2 + z2 = 1 0
Point of intersection p = O + t; i¢rsection P D
p lies on sphere D

Solve A tintersection2 +B 1:intersection +C=0
A=1, B=2(0.D), C=(0.0-1)

1:intersection = ('B T S)/(2 A)’
S =sqrt (B'"B -4 AC)

© Kavita Bala, Computer Science, Cornell University

Intersection: cube

tNear = -inf, tFar = +inf

For each pair of planes for the x,y,z axes {
Solve for Q[i] + D[i] t1 = Min[i] \
Solve for Q[i] + D[i] t2 = Max{i]
What if t1 > 12?7 swap
tNear = max (t1’ tNear)
teor = min (2, t-,,)

¥

if (tyear > trar) Missed box

else hit box

xMin xMax

© Kavita Bala, Computer Science, Cornell University

Tight Fit to Bounding Volume

© Kavita Bala, Computer Science, Cornell University

