Lecture 12: Interactive Ray Tracing and Acceleration Structures

> Fall 2004 Kavita Bala Computer Science Cornell University

HW 1

- Add whatever you need to
 - Get color in the materials
 - Diffuse, etc.
- Only direct lighting
- Only hard shadows
- So why spheres? So that radiosity/radiance conversions etc. work out.

Interactive Software Rendering

- Interactive
 - User-driven, not pre-scripted animation
 - At least a few frames per second (fps)
- Software
 - Major shading done in software
 - Can use hardware to help
- Rendering
 - Online, not pre-computed or captured
 - Eg, lightfields are pre-computed

© Kavita Bala, Computer Science, Cornell University

Why Software Rendering?

- Global Illumination: Non-local information
- Extremely high complexity
- Arbitrary shading models
- Portability
 - No tweaking: just works
 - No scene dependent optimizations

 $\ensuremath{\mathbb{C}}$ Kavita Bala, Computer Science, Cornell University

- 4D:
 - Radiance Interpolants
 - Holodeck
- 2D: Image based
 - Post-rendering Warp
 - Render Cache
 - Edge and Point Rendering
 - Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Post-Rendering 3D Warp

- Render subset of frames

 E.g, every 6th frame is rendered
- Use standard image warping techniques to compute the other frames

- 4D:
 - Radiance Interpolants
 - Holodeck
- 2D: Image based
 - Post-rendering Warp
 - Render Cache
 - Edge and Point Rendering
 - Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University

- 4D:
 - Radiance Interpolants
 - Holodeck
- 2D: Image based
 - Post-rendering Warp
 - Render Cache
 - Edge and Point Rendering
 - Corrective Texturing

- 4D:
 - Radiance Interpolants
 - Holodeck
- 2D: Image based
 - Post-rendering Warp
 - Render Cache
 - Edge and Point Rendering
 - Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

- Start with a standard hardware rendering of scene
 - Graphics hardware very good at interactive display
 - Start with a radiosity solution
- Compare to underlying renderer
 - Apply corrections where they differ
 - Corrections applied as projective textures

	Target renderer speed	Sparseness ratio	Typical frame rates	
Warp	< 1s	4 - 10	20 - 60 fps	
Corrective Tex.	20 - 200s	250 - 1000	5 - 10 fps	
RC	.5 - 10s	8 - 100	10 - 20 fps	
EPI	.5 - 10s	8 - 100	10 - 20 fps	

	Hardware accelerated	Independent of scene complexity	Moving objects	Quality
Warp	No	Yes	No	?
Corrective Tex.	Yes	No	No	Not real
RC	No	Yes	Yes	No
EPI	Yes	Yes	Yes	Yes

Dealing with High Complexity

- Many Lights
- Display systems

 Point-based approaches
- Visibility pre-processing systems
- Image-Based Rendering

Intersection: cube

