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HW 1
• Add whatever you need to ….

– Get color in the materials
– Diffuse, etc.

• Only direct lighting

• Only hard shadows

• So why spheres? So that radiosity/radiance 
conversions etc. work out.
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Interactive Software Rendering
• Interactive

– User-driven, not pre-scripted animation
– At least a few frames per second (fps)

• Software
– Major shading done in software

Can use hardware to help

• Rendering
– Online, not pre-computed or captured

Eg, lightfields are pre-computed
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Why Software Rendering?
• Global Illumination: Non-local information

• Extremely high complexity

• Arbitrary shading models

• Portability
– No tweaking: just works
– No scene dependent optimizations
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Performance Results II
• Comparison to Rasterization-Hardware

– Ray tracing scales well for large environments
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• Ray tracers compute radiance at each pixel

Rendering as Sampling

radiance

• Rendering = Sampling radiance

pixel number
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Coherence
• Within one frame: spatial coherence

radiance
Frame 1

• Across many frames: temporal coherence

Frame 2

pixel number
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Strategy
• Insight: radiance is mostly smooth -- use 

sparse sampling and reconstruction

radiance peak
discontinuitysmooth

• Radiance samples are very expensive
• Goal: reconstruct most pixels by interpolation
• Issues: discontinuities, non-linear variations
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Modified Visual Feedback Loop

Display

Application

Image

User
Renderer

Asynchronous
interface
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Display Process
• Automatically exploit spatial and temporal 

coherence
• Layered on top of an existing (slow) global 

illumination renderer
• Provide interactive performance
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Aside: Frameless Rendering
• Update pixels as they are computed

– Don’t wait for full frame to finish
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Frameless Rendering
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Sparse Sampling Approaches
• 4D: 

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing
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Post-Rendering 3D Warp
• Render subset of frames

– E.g, every 6th frame is rendered

• Use standard image warping techniques to 
compute the other frames
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Aside: Pixel Reprojection

• Goal: Want image at new viewpoint
• Reproject points from input images
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Aside: Pixel Reprojection

• Assume have depth/disparity per pixel
• If pixel (x,y) sees point P,  
• P = C + t D
• C is camera position, 
• D is direction from C through (x,y)
• t is distance along D

(x,y)D

Camera C

P
t



9

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

• Direction D

D = C + x i + y j + d k

(x, y) = pixel

• C = camera center
• d = distance of image plane from C
• C, d are known

(x,y)

D
C

P

i

j

-k
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P = C0 + t0 D0(x,y)

C0 + t0 D0 = C1 + t1 D1

t1 D1 = (C0 – C1) + t0 D0

C0, C1, D0, t0 are known

t1 D1 defines the reprojected pixel

Aside: Pixel Reprojection

(x,y)D0

New Camera C1
Camera C0
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Aside: Pixel Reprojection

• D1 = C1 + x1 i + y1 j + d1 k

• Solve for x1, y1 and t1

D0

New Camera C1
Camera C0

t1

(x1,y1)
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Post-Rendering 3D Warp
• Problem:

Reference frame Warped frame
The camera is moving to the left in this example.

Pixels do not project to pixel centers
Multiple pixels project to same pixel in new view
Holes and missing data



11

© Kavita Bala, Computer Science, Cornell University

How to fill holes?
• Warp from both past and future reference 

frames
– Heuristics for combining pixel results

Prior reference Warped frame Next reference
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Problem: Post-Rendering Warp
• Must predict the locations of future frames

– Longer predictions become rapidly less 
accurate

Camera path

Warped frames

Predicted frames



12

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D: 

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing
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Render Cache (Walter et al.)
• Interactivity is important

– Maintain relatively constant framerate
e.g., > 5 fps

– Degrade gracefully as rendering becomes more 
expensive

• Cache shaded pixels as 3D colored points
• Render new image

– Project points onto current image plane
– Filter to reduce artifacts

• Prioritize future rendering
– Identify problem pixels
– Sparse sampling for limited render budget



13

© Kavita Bala, Computer Science, Cornell University

Approach
• Data: Cloud of unordered points with:

– 3D position,color, age, object id
• Approach: reproject points into image plane

– Occlusion errors, holes in data

Initial view After reprojection
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Image Estimation
• Depth cull heuristic

– Problem: occluded points may be visible
Z-buffering only works within a pixel

– Clean up using nearby depth information
• Interpolate 3x3

Raw projection depth cull interpolation
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Sampling
• Choose pixels for rendering: sparse 

sampling
• Requested pixels sent to renderer(s)

– Results returned at some later frame

Displayed image Priority image Requested pixels
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Render Cache Adv and Limitations

• Improved interactivity
• Independent display process
• Drawback: pixel artifacts

Ray tracing Path tracing
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Sparse Sampling Approaches
• 4D: 

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing
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• Goal: Interactive high-quality rendering
– Expensive shading: e.g., global illumination
– But, mostly smooth (coherent)

Edge-and-Point [Bala’03]

naïve 
reconstructionpoints



16

© Kavita Bala, Computer Science, Cornell University

• Discontinuities are perceptually important
– Artifacts are disturbing

• Finding discontinuities by sampling
is expensive

Edge-and-Point Motivation: Performance
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• Edges: important discontinuities
– Silhouettes and shadows

• Points: sparse shading samples

Edge-and-Point Rendering

points

edges

edge-and-point 
reconstruction
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Edge-and-Point Image
• Alternative display representation
• Edge-constrained interpolation preserves 

sharp features
• Fast anti-aliasing
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System

Edge-constrained interpolation

Edge finding

3D edges

2D edges

Rasterization

Point cache

3D points

Reprojection

2D points

Shader

Asynchronous

Request
samples

Shading 
samples

EPI

Exploits
temporal

coherenceDecouples
shading 

from
display
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Silhouettes

N1·V > 0 (forward facing)
N2·V < 0 (backward facing)

V

N2
N1

objecteye
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Shadows: Hard and Soft
point light source area light source

blocker blocker

receiver receiver

um
br

a

pe
nu

mbr
a

umbral
eventpenumbral

event

shadow
event

Hard shadows Soft shadows
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Umbra and Penumbra Conditions

• Event plane tangential to light and blocker
L·Nblocker = L·Nlight = 0
Nlight·Nblocker = 1 (umbral), -1 (penumbral)

Nlight

Nblocker

umbral penumbral

Nlight
Nblocker

L L
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• Hierarchical trees: fast edge finding
– Interval-based

Edge Finding
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Soft Shadow Edges
Black: silhouettes, 

Red: umbral edges, Blue: penumbral edges
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Pixel types
• Pixels can have arbitrary edge complexity
• Classify pixels into 3 groups

– Empty: no edges
– Simple: can be approximated by 1 edge
– Complex: everything else

– Typical pixel classification statistics
empty (85-95%), simple (4-10%), complex (1-4%)

Empty Simple Complex
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• Goal: compact and fast
– Store at most one edge 

and one point per pixel
– Limited sub-pixel 

precision

• Combine edges and points in image space
– View-driven, lazy evaluation

Edge-and-Point Image (EPI)

EPI pixel

Point sample
(shaded)

Edge
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Reachability
• Reachable samples

– Pixel’s 5x5 neighborhood
– Connected without crossing any edges (or 

complex pixels)
• Propagated outward from each pixel

Propagation

Reachable

Unreachable
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Results: Quality
• Global 

illumination

• 3 lights

• 150k polygons

Without Edges With Edges

© Kavita Bala, Computer Science, Cornell University

Tea Stand

• Global illumination
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Sparse Sampling Approaches
• 4D: 

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing
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Corrective Texturing
• Start with a standard hardware rendering 

of scene
– Graphics hardware very good at interactive 

display
– Start with a radiosity solution

• Compare to underlying renderer
– Apply corrections where they differ
– Corrections applied as projective textures
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Corrective Texturing

Radiosity
solution

Corrected
image

Corrective
texture
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Corrective Texturing
• Sparse rendered samples compared to 

hardware displayed results
– Differences splatted into textures
– More samples generated near points which 

had large differences
– Samples which are likely to have changed are 

deprecated so that can be overwritten by 
future results
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Corrective Texturing
• Corrective textures 

are dynamically 
assigned to objects
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Comparison

Warp

Corrective Tex.

RC

EPI

Typical
frame rates

20 - 60 fps

5 - 10 fps

10 - 20 fps

10 - 20 fps

Sparseness ratio

4 - 10

250 - 1000

8 – 100

8 - 100

Target renderer 
speed

< 1s

20 - 200s

.5 - 10s

.5 - 10s
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Comparison

Warp

Corrective Tex.

RC

EPI

Moving 
objects

No

No

Yes

Yes

Independent of
scene complexity

Yes

No

Yes

Yes

Hardware
accelerated

No

Yes

No

Yes

Quality

?

Not really

No

Yes
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Prediction
• Hardware

– Speed
– Programmability

• Software
– High-complexity data sets
– Complex GI

• Hybrid techniques
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Dealing with High Complexity
• Many Lights

• Display systems
– Point-based approaches

• Visibility pre-processing systems

• Image-Based Rendering

Acceleration Data Structures

CS 665
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Making RT faster

Ray Tracing 
Acceleration
Techniques

Faster Intersections

Fewer Rays

Faster Ray-Object
Intersections

Fewer Ray-Object
Intersections

Regular Rays

Generalized Rays•For each pixel, O(N) 

•For each light, k shadow rays

•For GI and antialiasing: many rays per pixel
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Fewer Rays: Regular Rays
• Regular rays

– Adaptive tree-depth control
– Adaptive antialiasing 

V

S0 S1 R

T

S0 S1

S0 S1
R

S0 S1

S0 S1

V

Kt . Ks . Kt. Shading
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Generalized Rays
• Generalized rays represent a set of rays

– Cone
– Beam

• Pros
– Good for anti-aliasing
– Decreases number of rays

• Cons
– More complex intersection tests
– Reflections and refractions get hairy
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Making RT faster

Ray Tracing 
Acceleration
Techniques

Faster Intersections

Fewer Rays

Faster Ray-Object
Intersections

Fewer Ray-Object
Intersections

Regular Rays

Generalized Rays
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Faster Ray-Object Intersections
• Object bounding volumes

• Avoid intersection tests for expensive 
objects: e.g., polygon sets, spline surfaces
– Ray/sphere or ray/cuboid test is fast
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Intersection: sphere

Assume sphere x2 + y2 + z2 = 1
Point of intersection p = O + tintersection D
p lies on sphere
Solve A tintersection

2 + B tintersection + C = 0
A = 1,    B = 2 (O.D),     C = (O.O - 1)

tintersection = (-B ± S)/(2 A), 
S = sqrt (B*B - 4 AC)

O

D

p
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Intersection: cube
tNear = -inf, tFar = +inf
For each pair of planes for the x,y,z axes {

Solve for  O[i] + D[i] t1 = Min[i]
Solve for  O[i] + D[i] t2 = Max[i]
What if t1 > t2? swap
tNear = max (t1, tNear)
tFar = min (t2, tFar)  

}
if (tNear > tFar) missed box
else hit box

xMin xMax
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Tight Fit to Bounding Volume


