
1

Lecture 12: Interactive Ray
Tracing and

Acceleration Structures

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

HW 1
• Add whatever you need to ….

– Get color in the materials
– Diffuse, etc.

• Only direct lighting

• Only hard shadows

• So why spheres? So that radiosity/radiance
conversions etc. work out.

2

© Kavita Bala, Computer Science, Cornell University

Interactive Software Rendering
• Interactive

– User-driven, not pre-scripted animation
– At least a few frames per second (fps)

• Software
– Major shading done in software

Can use hardware to help

• Rendering
– Online, not pre-computed or captured

Eg, lightfields are pre-computed

© Kavita Bala, Computer Science, Cornell University

Why Software Rendering?
• Global Illumination: Non-local information

• Extremely high complexity

• Arbitrary shading models

• Portability
– No tweaking: just works
– No scene dependent optimizations

3

© Kavita Bala, Computer Science, Cornell University

Performance Results II
• Comparison to Rasterization-Hardware

– Ray tracing scales well for large environments

© Kavita Bala, Computer Science, Cornell University

• Ray tracers compute radiance at each pixel

Rendering as Sampling

radiance

• Rendering = Sampling radiance

pixel number

4

© Kavita Bala, Computer Science, Cornell University

Coherence
• Within one frame: spatial coherence

radiance
Frame 1

• Across many frames: temporal coherence

Frame 2

pixel number

© Kavita Bala, Computer Science, Cornell University

Strategy
• Insight: radiance is mostly smooth -- use

sparse sampling and reconstruction

radiance peak
discontinuitysmooth

• Radiance samples are very expensive
• Goal: reconstruct most pixels by interpolation
• Issues: discontinuities, non-linear variations

5

© Kavita Bala, Computer Science, Cornell University

Modified Visual Feedback Loop

Display

Application

Image

User
Renderer

Asynchronous
interface

© Kavita Bala, Computer Science, Cornell University

Display Process
• Automatically exploit spatial and temporal

coherence
• Layered on top of an existing (slow) global

illumination renderer
• Provide interactive performance

6

© Kavita Bala, Computer Science, Cornell University

Aside: Frameless Rendering
• Update pixels as they are computed

– Don’t wait for full frame to finish

© Kavita Bala, Computer Science, Cornell University

Frameless Rendering

7

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D:

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Post-Rendering 3D Warp
• Render subset of frames

– E.g, every 6th frame is rendered

• Use standard image warping techniques to
compute the other frames

8

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

• Goal: Want image at new viewpoint
• Reproject points from input images

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

• Assume have depth/disparity per pixel
• If pixel (x,y) sees point P,
• P = C + t D
• C is camera position,
• D is direction from C through (x,y)
• t is distance along D

(x,y)D

Camera C

P
t

9

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

• Direction D

D = C + x i + y j + d k

(x, y) = pixel

• C = camera center
• d = distance of image plane from C
• C, d are known

(x,y)

D
C

P

i

j

-k

© Kavita Bala, Computer Science, Cornell University

P = C0 + t0 D0(x,y)

C0 + t0 D0 = C1 + t1 D1

t1 D1 = (C0 – C1) + t0 D0

C0, C1, D0, t0 are known

t1 D1 defines the reprojected pixel

Aside: Pixel Reprojection

(x,y)D0

New Camera C1
Camera C0

10

© Kavita Bala, Computer Science, Cornell University

Aside: Pixel Reprojection

• D1 = C1 + x1 i + y1 j + d1 k

• Solve for x1, y1 and t1

D0

New Camera C1
Camera C0

t1

(x1,y1)

© Kavita Bala, Computer Science, Cornell University

Post-Rendering 3D Warp
• Problem:

Reference frame Warped frame
The camera is moving to the left in this example.

Pixels do not project to pixel centers
Multiple pixels project to same pixel in new view
Holes and missing data

11

© Kavita Bala, Computer Science, Cornell University

How to fill holes?
• Warp from both past and future reference

frames
– Heuristics for combining pixel results

Prior reference Warped frame Next reference

© Kavita Bala, Computer Science, Cornell University

Problem: Post-Rendering Warp
• Must predict the locations of future frames

– Longer predictions become rapidly less
accurate

Camera path

Warped frames

Predicted frames

12

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D:

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Render Cache (Walter et al.)
• Interactivity is important

– Maintain relatively constant framerate
e.g., > 5 fps

– Degrade gracefully as rendering becomes more
expensive

• Cache shaded pixels as 3D colored points
• Render new image

– Project points onto current image plane
– Filter to reduce artifacts

• Prioritize future rendering
– Identify problem pixels
– Sparse sampling for limited render budget

13

© Kavita Bala, Computer Science, Cornell University

Approach
• Data: Cloud of unordered points with:

– 3D position,color, age, object id
• Approach: reproject points into image plane

– Occlusion errors, holes in data

Initial view After reprojection

© Kavita Bala, Computer Science, Cornell University

Image Estimation
• Depth cull heuristic

– Problem: occluded points may be visible
Z-buffering only works within a pixel

– Clean up using nearby depth information
• Interpolate 3x3

Raw projection depth cull interpolation

14

© Kavita Bala, Computer Science, Cornell University

Sampling
• Choose pixels for rendering: sparse

sampling
• Requested pixels sent to renderer(s)

– Results returned at some later frame

Displayed image Priority image Requested pixels

© Kavita Bala, Computer Science, Cornell University

Render Cache Adv and Limitations

• Improved interactivity
• Independent display process
• Drawback: pixel artifacts

Ray tracing Path tracing

15

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D:

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

• Goal: Interactive high-quality rendering
– Expensive shading: e.g., global illumination
– But, mostly smooth (coherent)

Edge-and-Point [Bala’03]

naïve
reconstructionpoints

16

© Kavita Bala, Computer Science, Cornell University

• Discontinuities are perceptually important
– Artifacts are disturbing

• Finding discontinuities by sampling
is expensive

Edge-and-Point Motivation: Performance

© Kavita Bala, Computer Science, Cornell University

• Edges: important discontinuities
– Silhouettes and shadows

• Points: sparse shading samples

Edge-and-Point Rendering

points

edges

edge-and-point
reconstruction

17

© Kavita Bala, Computer Science, Cornell University

Edge-and-Point Image
• Alternative display representation
• Edge-constrained interpolation preserves

sharp features
• Fast anti-aliasing

© Kavita Bala, Computer Science, Cornell University

System

Edge-constrained interpolation

Edge finding

3D edges

2D edges

Rasterization

Point cache

3D points

Reprojection

2D points

Shader

Asynchronous

Request
samples

Shading
samples

EPI

Exploits
temporal

coherenceDecouples
shading

from
display

18

© Kavita Bala, Computer Science, Cornell University

Silhouettes

N1·V > 0 (forward facing)
N2·V < 0 (backward facing)

V

N2
N1

objecteye

© Kavita Bala, Computer Science, Cornell University

Shadows: Hard and Soft
point light source area light source

blocker blocker

receiver receiver

um
br

a

pe
nu

mbr
a

umbral
eventpenumbral

event

shadow
event

Hard shadows Soft shadows

19

© Kavita Bala, Computer Science, Cornell University

Umbra and Penumbra Conditions

• Event plane tangential to light and blocker
L·Nblocker = L·Nlight = 0
Nlight·Nblocker = 1 (umbral), -1 (penumbral)

Nlight

Nblocker

umbral penumbral

Nlight
Nblocker

L L

© Kavita Bala, Computer Science, Cornell University

• Hierarchical trees: fast edge finding
– Interval-based

Edge Finding

20

© Kavita Bala, Computer Science, Cornell University

Soft Shadow Edges
Black: silhouettes,

Red: umbral edges, Blue: penumbral edges

© Kavita Bala, Computer Science, Cornell University

Pixel types
• Pixels can have arbitrary edge complexity
• Classify pixels into 3 groups

– Empty: no edges
– Simple: can be approximated by 1 edge
– Complex: everything else

– Typical pixel classification statistics
empty (85-95%), simple (4-10%), complex (1-4%)

Empty Simple Complex

21

© Kavita Bala, Computer Science, Cornell University

• Goal: compact and fast
– Store at most one edge

and one point per pixel
– Limited sub-pixel

precision

• Combine edges and points in image space
– View-driven, lazy evaluation

Edge-and-Point Image (EPI)

EPI pixel

Point sample
(shaded)

Edge

© Kavita Bala, Computer Science, Cornell University

Reachability
• Reachable samples

– Pixel’s 5x5 neighborhood
– Connected without crossing any edges (or

complex pixels)
• Propagated outward from each pixel

Propagation

Reachable

Unreachable

22

© Kavita Bala, Computer Science, Cornell University

Results: Quality
• Global

illumination

• 3 lights

• 150k polygons

Without Edges With Edges

© Kavita Bala, Computer Science, Cornell University

Tea Stand

• Global illumination

23

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D:

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering
– Corrective Texturing

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing
• Start with a standard hardware rendering

of scene
– Graphics hardware very good at interactive

display
– Start with a radiosity solution

• Compare to underlying renderer
– Apply corrections where they differ
– Corrections applied as projective textures

24

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing

Radiosity
solution

Corrected
image

Corrective
texture

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing
• Sparse rendered samples compared to

hardware displayed results
– Differences splatted into textures
– More samples generated near points which

had large differences
– Samples which are likely to have changed are

deprecated so that can be overwritten by
future results

25

© Kavita Bala, Computer Science, Cornell University

Corrective Texturing
• Corrective textures

are dynamically
assigned to objects

© Kavita Bala, Computer Science, Cornell University

Comparison

Warp

Corrective Tex.

RC

EPI

Typical
frame rates

20 - 60 fps

5 - 10 fps

10 - 20 fps

10 - 20 fps

Sparseness ratio

4 - 10

250 - 1000

8 – 100

8 - 100

Target renderer
speed

< 1s

20 - 200s

.5 - 10s

.5 - 10s

26

© Kavita Bala, Computer Science, Cornell University

Comparison

Warp

Corrective Tex.

RC

EPI

Moving
objects

No

No

Yes

Yes

Independent of
scene complexity

Yes

No

Yes

Yes

Hardware
accelerated

No

Yes

No

Yes

Quality

?

Not really

No

Yes

© Kavita Bala, Computer Science, Cornell University

Prediction
• Hardware

– Speed
– Programmability

• Software
– High-complexity data sets
– Complex GI

• Hybrid techniques

27

© Kavita Bala, Computer Science, Cornell University

Dealing with High Complexity
• Many Lights

• Display systems
– Point-based approaches

• Visibility pre-processing systems

• Image-Based Rendering

Acceleration Data Structures

CS 665

28

© Kavita Bala, Computer Science, Cornell University

Making RT faster

Ray Tracing
Acceleration
Techniques

Faster Intersections

Fewer Rays

Faster Ray-Object
Intersections

Fewer Ray-Object
Intersections

Regular Rays

Generalized Rays•For each pixel, O(N)

•For each light, k shadow rays

•For GI and antialiasing: many rays per pixel

© Kavita Bala, Computer Science, Cornell University

Fewer Rays: Regular Rays
• Regular rays

– Adaptive tree-depth control
– Adaptive antialiasing

V

S0 S1 R

T

S0 S1

S0 S1
R

S0 S1

S0 S1

V

Kt . Ks . Kt. Shading

29

© Kavita Bala, Computer Science, Cornell University

Generalized Rays
• Generalized rays represent a set of rays

– Cone
– Beam

• Pros
– Good for anti-aliasing
– Decreases number of rays

• Cons
– More complex intersection tests
– Reflections and refractions get hairy

© Kavita Bala, Computer Science, Cornell University

Making RT faster

Ray Tracing
Acceleration
Techniques

Faster Intersections

Fewer Rays

Faster Ray-Object
Intersections

Fewer Ray-Object
Intersections

Regular Rays

Generalized Rays

30

© Kavita Bala, Computer Science, Cornell University

Faster Ray-Object Intersections
• Object bounding volumes

• Avoid intersection tests for expensive
objects: e.g., polygon sets, spline surfaces
– Ray/sphere or ray/cuboid test is fast

© Kavita Bala, Computer Science, Cornell University

Intersection: sphere

Assume sphere x2 + y2 + z2 = 1
Point of intersection p = O + tintersection D
p lies on sphere
Solve A tintersection

2 + B tintersection + C = 0
A = 1, B = 2 (O.D), C = (O.O - 1)

tintersection = (-B ± S)/(2 A),
S = sqrt (B*B - 4 AC)

O

D

p

31

© Kavita Bala, Computer Science, Cornell University

Intersection: cube
tNear = -inf, tFar = +inf
For each pair of planes for the x,y,z axes {

Solve for O[i] + D[i] t1 = Min[i]
Solve for O[i] + D[i] t2 = Max[i]
What if t1 > t2? swap
tNear = max (t1, tNear)
tFar = min (t2, tFar)

}
if (tNear > tFar) missed box
else hit box

xMin xMax

© Kavita Bala, Computer Science, Cornell University

Tight Fit to Bounding Volume

