
1

Lecture 11: Interactive
Rendering

Chapters 7 in Advanced GI

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

HW 1
• Questions?

2

© Kavita Bala, Computer Science, Cornell University

Interactive Software Rendering
• Interactive

– User-driven, not pre-scripted animation
– At least a few frames per second (fps)

• Software
– Major shading done in software

Can use hardware to help

• Rendering
– Online, not pre-computed or captured

Eg, lightfields are pre-computed

© Kavita Bala, Computer Science, Cornell University

An Oxymoron?
• Why not just use hardware?

– The games all use it

– It has lots of cool effects

– Isn’t software too slow?

3

© Kavita Bala, Computer Science, Cornell University

Fast interpolation from vertices
• Specify properties at vertices

– Color
– Texture coordinates
– Surface normals, etc.

• Interpolate at each pixel in triangle

• But: average triangle size is decreasing
– Many more visible triangles than pixels,

therefore, interpolation less valuable

© Kavita Bala, Computer Science, Cornell University

Fast Visibility Determination

• z-buffer: Amortized performance
– One rendering determines visible surfaces for

all pixels simultaneously

4

© Kavita Bala, Computer Science, Cornell University

Fast Visibility Determination
• Great for some visibility queries types

– Primary (eye) rays
– Shadow rays (point sources)

• Not so good for other types
– Shadow rays (area light sources)
– Many lights
– Reflection & refraction from curved

surfaces
– Indirect illumination
– Adaptive sampling

© Kavita Bala, Computer Science, Cornell University

Fast Shading
• Latest boards can do per-pixel shading

• Programmable

• Local shading only
– All inputs must be provided ahead of time
– Non-local shading can only be approximated

Shadows, reflections, indirect, etc

5

© Kavita Bala, Computer Science, Cornell University

Why Software Rendering?
• Global Illumination: Non-local information

• Extremely high complexity

• Arbitrary shading models

• Portability
– No tweaking: just works
– No scene dependent optimizations

© Kavita Bala, Computer Science, Cornell University

Hardware Vs. Software
• Hardware still has the edge due to its

dedicated pipeline

• Software attractive for its scalability and
flexiblility
– If it can be made “fast enough” for interactive

use
– And handle scene and/or effects the hardware

cannot handle

6

© Kavita Bala, Computer Science, Cornell University

Ray Tracing (or Ray Casting)

• Common visibility tool for software

• Flexible

• Efficient for large models
– Using an acceleration structure (grids, bsp, etc)

• Usually the largest computational bottleneck

• Easily parallelizable: each pixel in parallel

© Kavita Bala, Computer Science, Cornell University

Interactive RT (Parker et. al.)
• SGI Origin 2000

– 64 processors
– Shared memory

• Whitted-style ray tracing
– Shadow, reflection, and

refraction rays

• Non-polygonal primitives
– Spheres and splines

15 fps

7

© Kavita Bala, Computer Science, Cornell University

Interactive RT: (Parker et al.)

• Dynamic load balancing
– Tasks divided by screen

region
– Sequence of larger to

smaller tasks
– Found near ideal parallel

speedup

© Kavita Bala, Computer Science, Cornell University

Coherent Ray Tracing (Wald et. al.)
• Highly optimized ray tracing engine for

Intel-based PCs

• Carefully profiled their ray tracer
– Discovered it was often memory bound

• Hand-crafted and tuned their code
– Both C and assembly versions
– Compact, cache-friendly data structures
– Optimized for SIMD (SSE)
– Reordered computations for better coherence

8

© Kavita Bala, Computer Science, Cornell University

Coherent Ray Tracing (Wald et. al.)

• Optimizations
– Separated data based on use

Data needed for intersection stored separately
– Used compact axis-aligned BSP structure
– Cache aligned data
– Works on groups of four rays at a time

Allows for efficient use of SIMD (SSE)

• Limitations
– Restricted to triangles only
– Optimized for Phong shading specifically

© Kavita Bala, Computer Science, Cornell University

Test Scenes I
• Test scenes: 800 triangles to >8 million

Office:
34,000 triangles, 3 lights

Conference Room:
280,000 triangles, 2 lights

9

© Kavita Bala, Computer Science, Cornell University

Test Scenes II
• Test scenes: 800 triangles to >8 million

Berkeley Soda Hall:
1.5 to 8 million triangles

Terrain:
1 million triangles

(textured)

© Kavita Bala, Computer Science, Cornell University

Performance Results I
• Comparison to Rasterization-Hardware

– Rasterization : IRIS Performer
– RTRT: 512x512 Pixel, 1 CPU (PIII-800MHz)

0.8fps---Soda Hall (8M)

1.5fps0.6fps1.5fps0.5fps5th floor (2.5M)

1.1fps1.6fps4fps1.5fpsLibrary (907k)

1.1fps1.5fps6-12fps0.4fpsTheatre (680k)

1.8fps12.7fps>36fps>24fpsOffice (40k)

RTRTNVidiaOnyx3OctaneScene (triangles)

10

© Kavita Bala, Computer Science, Cornell University

Performance Results II
• Comparison to Rasterization-Hardware

– Ray tracing scales well for large environments

© Kavita Bala, Computer Science, Cornell University

Optimizations (Wald et. al.)
• Also parallelized for more speed

– Demonstrated on five dual processor PIIIs

• Times are for primary rays only
– Adding shadows, reflections, etc. adds costs

• Considerable speedup
– But, more is needed, especially for more

complex shading such as:
soft shadows, glossy reflections, and indirect
illumination

11

© Kavita Bala, Computer Science, Cornell University

Sample Images

© Kavita Bala, Computer Science, Cornell University

12

© Kavita Bala, Computer Science, Cornell University

Upshot
• Software Interactive Rendering is possible now

with current machines
– Good scaling with scene complexity
– Greater shading flexibility

• Many more challenges still remain
– Higher resolutions
– Anti-aliasing
– Fully dynamic environments
– Global Illumination
– Complex lighting

Interactive Global Illumination

13

© Kavita Bala, Computer Science, Cornell University

• Ray tracers compute radiance at each pixel

Rendering as Sampling

radiance

• Rendering = Sampling radiance

pixel number

© Kavita Bala, Computer Science, Cornell University

Coherence
• Within one frame: spatial coherence

radiance
Frame 1

• Across many frames: temporal coherence

Frame 2

pixel number

14

© Kavita Bala, Computer Science, Cornell University

Interactive Global Illumination
• Need to render every pixel of every frame?

Frame 10 Frame 20 Frame 30

• Exploit coherence in radiance
– object space, image space, temporal

© Kavita Bala, Computer Science, Cornell University

Strategy
• Insight: radiance is mostly smooth -- use

sparse sampling and reconstruction

radiance peak
discontinuitysmooth

• Radiance samples are very expensive
• Goal: reconstruct most pixels by interpolation
• Issues: discontinuities, non-linear variations

15

© Kavita Bala, Computer Science, Cornell University

Interactive Global Illumination
• Fast feedback
• Must bridge gap in framerate
• Interactive requirements

– Image quality
– Responsiveness

Don’t make the user wait
Provide rapid user feedback

– Consistency
Don’t surprise or distract the user
Avoid sudden changes if possible

• Eg, in quality, frame rate, popping, etc.

© Kavita Bala, Computer Science, Cornell University

Visual Feedback Loop

renderer

application

image

user

• Standard visual feedback loop
– Entirely synchronous
– Frame-rate limited by renderer

16

© Kavita Bala, Computer Science, Cornell University

Modified Visual Feedback Loop

Display

Application

Image

User
Renderer

Asynchronous
interface

© Kavita Bala, Computer Science, Cornell University

Display Process
• Automatically exploit spatial and temporal

coherence
• Layered on top of an existing (slow) global

illumination renderer
• Provide interactive performance

17

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D:

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering

© Kavita Bala, Computer Science, Cornell University

Radiance Interpolants Bala(96,97,99)
• Radiance interpolant:

– set of sparse samples of radiance function that
allow accurate reconstruction

• Note x-axis is the axis of rays

18

© Kavita Bala, Computer Science, Cornell University

Interpolant for Approximation

• Approximate radiance with conservative error
bounds: accelerate ray tracing
– Exploits spatial and temporal coherence
– On-line: no preprocessing

Ray for pixel 1 Frame 0
Ray for pixel 2 Frame 0

Ray for pixel 1 Frame 1
Ray for pixel 2 Frame 1

© Kavita Bala, Computer Science, Cornell University

Ray Parameterization
• Radiance is computed along a ray
• In 2D, ray can be parameterized by (a,c)

R
a

c

19

© Kavita Bala, Computer Science, Cornell University

a-c line space

a

c

Dual Space

world space

R

a c

R00
R00

R01

R01

R10

R10

R11R11

R

• Space of rays is called line space
• It is a dual space
• Every ray in world space is a point in line

space
• And vice-versa

© Kavita Bala, Computer Science, Cornell University

a-c line space

a

c

• Bilinear interpolation
R = (1-a)(1-c) R00 + a (1-c) R10 + c (1-a) R01+ a c R11

• Radiance interpolant: set of four radiance
samples for region of line space

Linespace and Interpolants

world space

R

a c

R00
R00

R01

R01

R10

R10

R11R11

R

20

© Kavita Bala, Computer Science, Cornell University

Data structure: Linetree
• Linetree stores interpolants for each object
• Hierarchical tree over line space

– in 2D, quadtree
• Indexed by ray coordinates

– Given (a,c), find linetree leaf and its
interpolant

a-c line space
a

c (a,c)

© Kavita Bala, Computer Science, Cornell University

System Overview

Interpolant ray tracer

Base ray tracer

collect
radiance
samples

render pixel approximate
pixel radiance

render
failed
pixels

Interpolant
cache

Model

21

© Kavita Bala, Computer Science, Cornell University

3D Rays: 4D Parameterization
• Ray parameterized by (a,b,c,d):
• 6 such pairs of faces

• Linespace is 4D
– Every ray is point in 4D linespace
– A box in 4D linespace corresponds to a

bundle of 3D rays

(a,b) (c,d)

cdab

© Kavita Bala, Computer Science, Cornell University

4D Radiance Interpolants
• Interpolant associated with

4D hypercube in line space
– Sixteen radiance samples
– Quadrilinear interpolation

• Samples stored in 4D linetree

• Error-driven subdivision

(a,b) (c,d)

cdab

22

© Kavita Bala, Computer Science, Cornell University

Results: Museum Scene

gray: interpolation success
yellow: silhouettes; green: shadows; cyan: non-linear radiance

1000+ ray-tracing primitives (100k-500k polygons)
195 MHz R10000

© Kavita Bala, Computer Science, Cornell University

Sparse Sampling Approaches
• 4D:

– Radiance Interpolants
– Holodeck

• 2D: Image based
– Post-rendering Warp
– Render Cache
– Edge and Point Rendering

