
1

Lecture 10: Monte Carlo
Rendering

Chapters 4, 5 and 7 in Advanced GI

Fall 2004
Kavita Bala

Computer Science
Cornell University

© Kavita Bala, Computer Science, Cornell University

Direct paths
• Different path generators produce different

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);

2

© Kavita Bala, Computer Science, Cornell University

Indirect Illumination
• Paths of length > 1

• Many different path generators possible

• Efficiency depends on:
– BRDFs along the path
– Visibility function
– ...

© Kavita Bala, Computer Science, Cornell University

Indirect paths

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver gathering

- 1 visibility term
- 1 ray intersection

Surface sampling

- 2 visibility terms;
can be 0

3

© Kavita Bala, Computer Science, Cornell University

More variants ...
• Shoot ray from receiver point, find hit

location
• Shoot ray from hit point, check if on light

source
– per path:

2 ray intersections
Le might be zero

© Kavita Bala, Computer Science, Cornell University

Indirect paths
• Same principles apply to paths of length > 2

– generate multiple surface points
– generate multiple bounces from light sources

and connect to receiver
– generate multiple bounces from receiver and

connect to light sources
– …

• Estimator and noise characteristics change
with path generator

4

© Kavita Bala, Computer Science, Cornell University

Indirect paths

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

q = generate_indirect_path;
est_rad += energy_transfer(q) / p(q);

est_rad = est_rad / n;
return(est_rad);

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing
• Sample direct term

• Sample hemisphere with random rays for
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions

into a single PDF

5

© Kavita Bala, Computer Science, Cornell University

• Uniform sampling over the hemisphere

)2/(1)(π=Θp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→

x

dnfxLxL xr ω),cos()()()(

© Kavita Bala, Computer Science, Cornell University

• Sampling according to the cosine factor

πθ /cos)(=Θp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→

x

dnfxLxL xr ω),cos()()()(

6

© Kavita Bala, Computer Science, Cornell University

• Sampling according to the BRDF

)(~)(Ψ↔ΘΘ rfp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→

x

dnfxLxL xr ω),cos()()()(

© Kavita Bala, Computer Science, Cornell University





























+<≤
Ψ

ΨΨΨ←

<
Ψ

ΨΨ←

=

+=

otherwise

qqq
pq

NRkxL

q
pq

NkxL

L

LLL

i

ii
n

si

i

idi

indirect

speculardiffuseindirect

|0

|
)(

),cos(),(cos)(

|
)(

),cos()(

211
22

1
11

ξ

ξ

Example: sample according to BRDF

• Discrete pdf q1, q2, q3 1321 =++ qqq

7

© Kavita Bala, Computer Science, Cornell University

• Sampling according to the BRDF times
the cosine

θcos)(~)(Ψ↔ΘΘ rfp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→

x

dnfxLxL xr ω),cos()()()(

© Kavita Bala, Computer Science, Cornell University

Multi-Importance-Sampling

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ=Θ→

x

dnxLfxL xr ω),cos()()()(

BRDF IrradianceRadiance

8

© Kavita Bala, Computer Science, Cornell University

Importance Sampling

• Say we want to sample according to
cosine term, BRDF, ….

• How do we blend the different sampling
algorithms together?

© Kavita Bala, Computer Science, Cornell University

Example

• Want to merge both techniques of sampling
– How?

9

© Kavita Bala, Computer Science, Cornell University

Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample

)(
)(

)(
)(

,22

,2
,2

,11

,1
,1

j

j
j

j

j
j Xp

Xf
Y

Xp
Xf

Y ==

jjj YwYwY ,22,11 +=

)()(
)()(

21

1
1 xpxp

xpxw
+

=
)()(

)()(
21

2
2 xpxp

xpxw
+

=

© Kavita Bala, Computer Science, Cornell University

Multiple Importance Sampling

10

© Kavita Bala, Computer Science, Cornell University

Efficiency

• Some techniques:
– Importance sampling
– Sampling patterns

Stratified, Quasi-Monte Carlo
– Many others

CostVariance
Efficiency

•
∝

1

© Kavita Bala, Computer Science, Cornell University

General GI algorithm
• Design path generators

• Path generators determine efficiency of
global illumination algorithm

• Black boxes
– evaluate brdf, Le

– ray intersection
– visibility evaluation

11

© Kavita Bala, Computer Science, Cornell University

Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping

© Kavita Bala, Computer Science, Cornell University

Stochastic ray tracing: limitations
• Generate a path from the eye to the light

source

12

© Kavita Bala, Computer Science, Cornell University

When does it not work?
• Scenes in which indirect lighting dominates

© Kavita Bala, Computer Science, Cornell University

Bidirectional Path Tracing
• So … we can generate paths starting from

the light sources!

• Shoot ray to
camera to see
what pixels get
contributions

13

© Kavita Bala, Computer Science, Cornell University

Bidirectional Path Tracing
• Or paths generated from both camera and

source at the same time ...!

• Connect
endpoints to
compute final
contribution

© Kavita Bala, Computer Science, Cornell University

Complex path generators
• Bidirectional ray tracing

– shoot a path from light source
– shoot a path from receiver
– connect end points

14

© Kavita Bala, Computer Science, Cornell University

Why? BRDF - Reciprocity
• Direction in which path is generated, is not

important: Reciprocity

• Algorithms:
– trace rays from the eye to the light source
– trace rays from light source to eye
– any combination of the above

)()()(Θ↔Ψ=Ψ→Θ=Θ→Ψ fff

© Kavita Bala, Computer Science, Cornell University

Bidirectional path tracing

15

© Kavita Bala, Computer Science, Cornell University

Bidirectional ray tracing
• Parameters

– eye path length = 0: shooting from source
– light path length = 0: gathering at receiver

• When useful?
– Light sources difficult to reach
– Specific brdf evaluations (e.g., caustics)

© Kavita Bala, Computer Science, Cornell University

Classic ray tracing?
• Shoot shadow-rays (direct illumination)

• Shoot perfect specular rays only for
indirect

• Ignores many paths
– Does not solve the rendering equation

16

© Kavita Bala, Computer Science, Cornell University

Other Rendering Techniques
• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping

© Kavita Bala, Computer Science, Cornell University

Metropolis

• Based on Metropolis Sampling (1950s)

• Introduced by Veach and Guibas to CG

• Deals with hard to find light paths
– Robust

• Hairy math, but it works
– Not that easy to implement

17

© Kavita Bala, Computer Science, Cornell University

Metropolis

• Generate paths

• Once a valid path is found, mutate it to
generate new valid paths

• Advantages:
– Path re-use
– Local exploration

Insight: found hard-to-find light distribution,
mutate to find other such paths

© Kavita Bala, Computer Science, Cornell University

Metropolis

18

© Kavita Bala, Computer Science, Cornell University

Metropolis

valid path

© Kavita Bala, Computer Science, Cornell University

Metropolis

small
perturbations

19

© Kavita Bala, Computer Science, Cornell University

Metropolis

small
perturbations

© Kavita Bala, Computer Science, Cornell University

Metropolis

mutations

20

© Kavita Bala, Computer Science, Cornell University

Metropolis

Accept
mutations
based on
energy
transport

© Kavita Bala, Computer Science, Cornell University

Metropolis

21

© Kavita Bala, Computer Science, Cornell University

Metropolis
• Advantages

– Robust
– Good for hard to find light paths

• Disadvantages
– Slow
– Tricky to implement and get right

© Kavita Bala, Computer Science, Cornell University

Unbiased vs. Consistent
• Unbiased

– No systematic error
– E[Iestimator] = I

Better results with larger N

• Consistent
– Converges to correct result with more samples
– E[Iestimator] = I + ε where limN →∞ ε = 0

22

© Kavita Bala, Computer Science, Cornell University

Biased Methods
• MC problems

– Too noisy/slow
– Noise is objectionable

• Biased methods: store information (caching)
– Better type of noise: blurring
– Greg Ward’s Radiance
– Photon Mapping
– Density Estimation

© Kavita Bala, Computer Science, Cornell University

Irradiance Caching
• Introduced by Greg Ward 1988

• Implemented in RADIANCE
– Public-domain software

• Exploits smoothness of irradiance
– Cache and interpolate irradiance estimates

23

© Kavita Bala, Computer Science, Cornell University

Irradiance Caching Approach
• Irradiance E(x) estimated using MC

• Cache irradiance when possible

• Store in octree for fast access

• When do we use this cache of irradiance
values?

© Kavita Bala, Computer Science, Cornell University

Smoothness Measure
• When new sample requested

– Query octree for samples near location
– Check ε at x, xi is a nearby sample

– Weight samples inversely proportional to εi

– Otherwise, compute new sample

i
i

i
i nn

R
xxnx rrr

•−+
−

= 1||||),(ε

∑
∑

>

>=

awi
i

awi
iii

i

i

nxw

xEnxw
nxE

/1,

/1,

),(

)(),(
),(r

r

r

24

© Kavita Bala, Computer Science, Cornell University

Radiance Examples

© Kavita Bala, Computer Science, Cornell University

Radiance: Example

25

© Kavita Bala, Computer Science, Cornell University

Photon Map
• Build on irradiance caching
• Use bidirectional ray tracing

Caustic: LS+ D E

© Kavita Bala, Computer Science, Cornell University

Photon Map
• 2 passes:

– shoot “photons” (light-rays) and record any
hit-points

– shoot viewing rays, collect information
from stored photons

26

© Kavita Bala, Computer Science, Cornell University

Pass 1: shoot photons

• Light path
generated using
MC techniques and
Russian Roulette

• Store:
– position
– incoming direction
– color
– ...

© Kavita Bala, Computer Science, Cornell University

Pass 1: shoot photons

• Light path
generated using
MC techniques and
Russian Roulette

• Store:
– position
– incoming direction
– color
– ...

27

© Kavita Bala, Computer Science, Cornell University

Pass 1: shoot photons

• Light path
generated using
MC techniques and
Russian Roulette

• Store:
– position
– incoming direction
– color
– ...

© Kavita Bala, Computer Science, Cornell University

Pass 1: shoot photons

28

© Kavita Bala, Computer Science, Cornell University

Pass 2: viewing ray (naive)

• Search for N
closest photons

• Assume these
photons hit the
point we’re
interested in

• Compute average
radiance

© Kavita Bala, Computer Science, Cornell University

Pass 2: viewing ray (better)

• Search for N
closest photons
(+check normal)

• Assume these
photons hit the
point we’re
interested in

• Compute average
radiance

29

© Kavita Bala, Computer Science, Cornell University

Efficiency

• Want k nearest photons
– Use Balanced kd-tree

• Using photon maps as is create noisy
images
– Need EXTREMELY large amount of photons

• Filtering techniques can be used with
different type of kernels

• The filtered results often look too blurry !!!

© Kavita Bala, Computer Science, Cornell University

Pass 2: Direct Illumination

30

© Kavita Bala, Computer Science, Cornell University

Pass 2: Specular reflections

© Kavita Bala, Computer Science, Cornell University

Pass 2: Caustics
• Direct use of

“caustic” maps

• The “caustic” map
is similar to a
photon map but
treats LS*D path

• Density of photons
in caustic map
usually high
enough to use as is

31

© Kavita Bala, Computer Science, Cornell University

Pass 2:Indirect Diffuse
• Search for N

closest photons

• Assume these
photons hit the
point

• Compute average
radiance by
importance
sampling of
hemisphere

© Kavita Bala, Computer Science, Cornell University

Photon Map Results

32

© Kavita Bala, Computer Science, Cornell University

Summary of MC

)(Θ→xL

x

… find paths between sources and surfaces to be shaded

© Kavita Bala, Computer Science, Cornell University

MC Advantages
• Convergence rate of O()

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1

33

© Kavita Bala, Computer Science, Cornell University

MC integration - Non-Uniform

• Generate samples according to density
function p(x)

• Some parts of the integration domain have
higher importance

• What is optimal p(x)?

∑
=

=
N

i i

i

xp
xf

N
I

1)(
)(1

∫≈ dxxfxfxp)(/)()(

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function
p(x)

• 2) Integrate to get a
probability
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples

1

0

iξ

ix

)(1 ξ−= Px

∫=
x

dttpxP
0

)()(

Note this is similar to going
from y axis to x in discrete case!

34

© Kavita Bala, Computer Science, Cornell University

How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ
x

dnxLf xr ω),cos()()(

© Kavita Bala, Computer Science, Cornell University

How to compute? Recursion ...

• Recursion ….

• Each additional bounce
adds one more level of
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”

35

© Kavita Bala, Computer Science, Cornell University

Russian Roulette
• Terminate recursion using Russian roulette
• Pick some ‘absorption probability’ α

– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10

• Intuition
– instead of shooting 10 rays, we shoot only 1, but

count the contribution of this one 10 times

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point

(branching factor)

• Branching factor = 1: path tracing

36

© Kavita Bala, Computer Science, Cornell University

Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•

•

•

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many

samples will be used

• Using QMC directions evenly spaced no
matter how many samples are used

• Samples properly stratified-> better than
pure MC

37

© Kavita Bala, Computer Science, Cornell University

Next Event Estimation

indirectdirecte LLLxL ++=Θ→)(

∫∫
ΩΩ

⋅⋅+⋅⋅+=
xx

rre ffL coscos

• So … sample direct and indirect with
separate MC integration

© Kavita Bala, Computer Science, Cornell University

Direct paths
• Different path generators produce different

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);

38

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions

into a single PDF

© Kavita Bala, Computer Science, Cornell University

Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample

)()(
)()(

)(
)(

)(
)(

21

,22,11

,22

,2
,2

,11

,1
,1

xpxp
xpxw

YwYwY
Xp
Xf

Y
Xp
Xf

Y

i
i

jjj

j

j
j

j

j
j

+
=

+=

==

39

© Kavita Bala, Computer Science, Cornell University

Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping

