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Direct paths
• Different path generators produce different 

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Indirect Illumination
• Paths of length > 1

• Many different path generators possible

• Efficiency depends on:
– BRDFs along the path
– Visibility function
– ...
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Indirect paths

Source shooting

- 1 visibility term
- 1 ray intersection

Receiver gathering

- 1 visibility term
- 1 ray intersection

Surface sampling

- 2 visibility terms;
can be 0
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More variants ...
• Shoot ray from receiver point, find hit 

location
• Shoot ray from hit point, check if on light 

source
– per path:

2 ray intersections
Le might be zero
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Indirect paths
• Same principles apply to paths of length > 2

– generate multiple surface points
– generate multiple bounces from light sources 

and connect to receiver
– generate multiple bounces from receiver and 

connect to light sources
– …

• Estimator and noise characteristics change 
with path generator
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Indirect paths

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

q = generate_indirect_path;
est_rad += energy_transfer(q) / p(q);

est_rad = est_rad / n;
return(est_rad);
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Stochastic Ray Tracing
• Sample direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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• Uniform sampling over the hemisphere

)2/(1)( π=Θp

Sampling strategies
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• Sampling according to the cosine factor

πθ /cos)( =Θp

Sampling strategies

∫
Ω
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• Sampling according to the BRDF

)(~)( Ψ↔ΘΘ rfp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→
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Example: sample according to BRDF

• Discrete pdf q1, q2, q3 1321 =++ qqq
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• Sampling according to the BRDF times 
the cosine

θcos)(~)( Ψ↔ΘΘ rfp

Sampling strategies

∫
Ω

Ψ⋅Ψ⋅Θ↔Ψ⋅Ψ←=Θ→

x
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Multi-Importance-Sampling

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ=Θ→

x

dnxLfxL xr ω),cos()()()(

BRDF IrradianceRadiance
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Importance Sampling

• Say we want to sample according to 
cosine term, BRDF, ….

• How do we blend the different sampling 
algorithms together?
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Example

• Want to merge both techniques of sampling
– How?
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Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample
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Multiple Importance Sampling
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Efficiency

• Some techniques:
– Importance sampling
– Sampling patterns

Stratified, Quasi-Monte Carlo
– Many others

CostVariance
Efficiency

•
∝

1
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General GI algorithm
• Design path generators

• Path generators determine efficiency of 
global illumination algorithm

• Black boxes
– evaluate brdf, Le

– ray intersection
– visibility evaluation
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Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping
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Stochastic ray tracing: limitations
• Generate a path from the eye to the light 

source
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When does it not work?
• Scenes in which indirect lighting dominates
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Bidirectional Path Tracing
• So … we can generate paths starting from 

the light sources! 

• Shoot ray to 
camera to see 
what pixels get 
contributions
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Bidirectional Path Tracing
• Or paths generated from both camera and 

source at the same time ...! 

• Connect 
endpoints to 
compute final 
contribution
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Complex path generators
• Bidirectional ray tracing

– shoot a path from light source
– shoot a path from receiver
– connect end points
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Why? BRDF - Reciprocity
• Direction in which path is generated, is not 

important: Reciprocity

• Algorithms:
– trace rays from the eye to the light source
– trace rays from light source to eye
– any combination of the above

)()()( Θ↔Ψ=Ψ→Θ=Θ→Ψ fff
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Bidirectional path tracing
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Bidirectional ray tracing
• Parameters

– eye path length = 0: shooting from source
– light path length = 0: gathering at receiver

• When useful?
– Light sources difficult to reach
– Specific brdf evaluations (e.g., caustics)
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Classic ray tracing?
• Shoot shadow-rays (direct illumination)

• Shoot perfect specular rays only for 
indirect

• Ignores many paths
– Does not solve the rendering equation
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Other Rendering Techniques
• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping
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Metropolis

• Based on Metropolis Sampling (1950s)

• Introduced by Veach and Guibas to CG

• Deals with hard to find light paths
– Robust

• Hairy math, but it works
– Not that easy to implement
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Metropolis

• Generate paths

• Once a valid path is found, mutate it to 
generate new valid paths

• Advantages:
– Path re-use
– Local exploration

Insight: found hard-to-find light distribution, 
mutate to find other such paths
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Metropolis
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Metropolis

valid path
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Metropolis

small
perturbations
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Metropolis

small
perturbations
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Metropolis

mutations
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Metropolis

Accept
mutations
based on
energy
transport
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Metropolis
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Metropolis
• Advantages

– Robust
– Good for hard to find light paths

• Disadvantages
– Slow
– Tricky to implement and get right
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Unbiased vs. Consistent
• Unbiased

– No systematic error
– E[Iestimator] = I

Better results with larger N

• Consistent
– Converges to correct result with more samples
– E[Iestimator] = I + ε where limN →∞ ε = 0
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Biased Methods
• MC problems

– Too noisy/slow
– Noise is objectionable

• Biased methods: store information (caching)
– Better type of noise: blurring 
– Greg Ward’s Radiance
– Photon Mapping 
– Density Estimation
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Irradiance Caching
• Introduced by Greg Ward 1988

• Implemented in RADIANCE
– Public-domain software

• Exploits smoothness of irradiance
– Cache and interpolate irradiance estimates
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Irradiance Caching Approach
• Irradiance E(x) estimated using MC

• Cache irradiance when possible

• Store in octree for fast access

• When do we use this cache of irradiance 
values?
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Smoothness Measure
• When new sample requested

– Query octree for samples near location
– Check ε at x, xi is a nearby sample

– Weight samples inversely proportional to εi

– Otherwise, compute new sample
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Radiance Examples

© Kavita Bala, Computer Science, Cornell University

Radiance: Example
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Photon Map
• Build on irradiance caching
• Use bidirectional ray tracing

Caustic:  LS+ D E
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Photon Map
• 2 passes:

– shoot “photons” (light-rays) and record any 
hit-points

– shoot viewing rays, collect information 
from stored photons
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Pass 1: shoot photons

• Light path 
generated using 
MC techniques and 
Russian Roulette

• Store:
– position
– incoming direction
– color
– ...
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Pass 1: shoot photons

• Light path 
generated using 
MC techniques and 
Russian Roulette

• Store:
– position
– incoming direction
– color
– ...
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Pass 1: shoot photons

• Light path 
generated using 
MC techniques and 
Russian Roulette

• Store:
– position
– incoming direction
– color
– ...
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Pass 1: shoot photons
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Pass 2: viewing ray (naive)

• Search for N 
closest photons

• Assume these 
photons hit the 
point we’re 
interested in

• Compute average 
radiance
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Pass 2: viewing ray (better)

• Search for N 
closest photons 
(+check normal)

• Assume these 
photons hit the 
point we’re 
interested in

• Compute average 
radiance
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Efficiency

• Want k nearest photons
– Use Balanced kd-tree

• Using photon maps as is create noisy 
images 
– Need EXTREMELY large amount of photons

• Filtering techniques can be used with 
different type of kernels

• The filtered results often look too blurry !!!
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Pass 2: Direct Illumination
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Pass 2: Specular reflections
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Pass 2: Caustics
• Direct use of 

“caustic” maps

• The “caustic” map 
is similar to a 
photon map but 
treats LS*D path

• Density of photons 
in caustic map 
usually high 
enough to use as is
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Pass 2:Indirect Diffuse
• Search for N 

closest photons

• Assume these 
photons hit the 
point

• Compute average 
radiance by 
importance 
sampling of 
hemisphere

© Kavita Bala, Computer Science, Cornell University

Photon Map Results



32

© Kavita Bala, Computer Science, Cornell University

Summary of MC

)( Θ→xL

x

… find paths between sources and surfaces to be shaded
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MC Advantages
• Convergence rate of O(      )

• Simple
– Sampling
– Point evaluation
– Can use black boxes

• General
– Works for high dimensions
– Deals with discontinuities, crazy functions,…

N
1
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MC integration - Non-Uniform

• Generate samples according to density 
function p(x)

• Some parts of the integration domain have 
higher importance

• What is optimal p(x)?

∑
=

=
N

i i

i

xp
xf

N
I

1 )(
)(1

∫≈ dxxfxfxp )(/)()(

© Kavita Bala, Computer Science, Cornell University

• 1) Choose a normalized
probability density function 
p(x)

• 2) Integrate to get a 
probability
distribution function P(x):

• 3) Invert P: 0 1

Non-Uniform Samples
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Note this is similar to going 
from y axis to x in discrete case!
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How to compute?

L(x→Θ) = ?

Check for Le(x→Θ)

Now add Lr(x→Θ) = L=?

∫
Ω

Ψ⋅Ψ⋅Ψ←⋅Θ↔Ψ
x

dnxLf xr ω),cos()()(
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How to compute? Recursion ...

• Recursion ….

• Each additional bounce 
adds one more level of 
indirect light

• Handles ALL light transport

• “Stochastic Ray Tracing”
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Russian Roulette
• Terminate recursion using Russian roulette
• Pick some ‘absorption probability’ α

– probability 1-α that ray will bounce
– estimated radiance becomes L/ (1-α)

• E.g. α = 0.9
– only 1 chance in 10 that ray is reflected
– estimated radiance of that ray is multiplied by 10

• Intuition
– instead of shooting 10 rays, we shoot only 1, but 

count the contribution of this one 10 times
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Stochastic Ray Tracing

• Parameters?
– # starting rays per pixel
– # random rays for each surface point 

(branching factor)

• Branching factor = 1: path tracing
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Higher Dimensions
• Stratified grid sampling:

→ Nd samples

• N-rooks sampling:

→ N samples

•
• • •

• • •
•

• • • •

• • • •

•
•

•

•
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Quasi Monte Carlo

• Converges as fast as stratified sampling
– Does not require knowledge about how many 

samples will be used

• Using QMC directions evenly spaced no 
matter how many samples are used

• Samples properly stratified-> better than 
pure MC
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Next Event Estimation

indirectdirecte LLLxL ++=Θ→ )(

∫∫
ΩΩ

⋅⋅+⋅⋅+=
xx

rre ffL coscos

• So … sample direct and indirect with 
separate MC integration
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Direct paths
• Different path generators produce different 

estimators and different error characteristics
• Direct illumination general algorithm:

compute_radiance (point, direction)
est_rad = 0;
for (i=0; i<n; i++)

p = generate_path;
est_rad += energy_transfer(p) / probability(p);

est_rad = est_rad / n;
return(est_rad);
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Stochastic Ray Tracing
• Sample area of light source for direct term

• Sample hemisphere with random rays for 
indirect term

• Optimizations:
– Stratified sampling
– Importance sampling
– Combine multiple probability density functions 

into a single PDF
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Balance Heuristic
• Two sampling techniques: jth sample

– X1,j with pdf p1(x), X2,j with pdf p2(x)
– Estimator Yj for jth sample
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Other Rendering Techniques
• Bidirectional Path Tracing

• Metropolis

• Biased Techniques
– Irradiance caching
– Photon Mapping


