CS664 Computer Vision

3. Edges

Dan Huttenlocher

Edge Detection

- Convert a gray or color image into set of curves
 - Represented as binary image
- Capture properties of shapes

Several Causes of Edges

- Sudden changes in various properties of scene can lead to intensity edges
 - Scene changes result in changes of image brightness/color

 - Change in depth
 - Change in surface marking
 - Change in illumination
 - Change in surface normal

Detecting Edges

- Seek sudden changes in intensity
 - Various derivatives of image
- Idealized continuous image $I(x,y)$
- Gradient (first derivative), vector valued
 \[\nabla I = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) \]
- Squared gradient magnitude
 \[\| \nabla I \|^2 = \left(\frac{\partial I}{\partial x} \right)^2 + \left(\frac{\partial I}{\partial y} \right)^2 \]
 - Avoid computing square root
- Laplacian (second derivative)
 \[\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2} \]

The Gradient

- Direction of most rapid change
 \[\nabla I = \left(\frac{\partial I}{\partial x}, 0 \right) \]
 \[\nabla I = (0, \frac{\partial I}{\partial y}) \]
 \[\nabla I = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right) \]

- Gradient direction is $\text{atan}(\partial I/\partial y, \partial I/\partial x)$
 - Normal to edge
- Strength of edge given by grad magnitude
 - Often use squared magnitude to avoid computing square roots

Finite Differences

- Images are digitized
 - Idealized continuous underlying function $I(x,y)$ realized as discrete values on a grid $I[u,v]$
- Approximations to derivatives (1D)
 \[\frac{dF}{dx} = F[u+1] - F[u] \]
 \[\frac{dF}{dx^2} = F[u-1] - 2F[u] + F[u+1] \]
- Dots: edge at extremum
- Dots: edge at zero crossing
- First derivative shifts grid
Discrete Gradient
- Partial derivatives estimated for boundaries between adjacent pixels
 - E.g., pixel and next one in x,y directions
- Yields estimates at different points in each direction if use x,y directions
- Generally use 45° directions to solve this
 - Magnitude fine, but gradient orientation needs to be rotated to correspond to axes

Discrete Laplacian
- Laplacian at u,v
 \[
 \frac{\partial^2 I}{\partial x^2} = I[u-1,v] - 2I[u,v] + I[u+1,v]
 \]
 \[
 \frac{\partial^2 I}{\partial y^2} = I[u,v-1] - 2I[u,v] + I[u,v+1]
 \]
- \(\nabla^2 I\) is sum of directional second derivatives:
 \[I[u-1,v]+I[u+1,v]+I[u,v-1]+I[u,v+1]-4I[u,v]\]
- Can view as 3x3 mask or kernel
 - Value at u,v given by sum of product with I
- Grid yields poor rotational symmetry

Problems With Local Detectors
- 1D example illustrates effect of noise (variation) on local measures

Estimating Discrete Gradient
- Gradient at u,v with 45° axes
 - Down-right: \(\frac{\partial I}{\partial x'} = I[u+1,v+1]-I[u,v]\)
 - Down-left: \(\frac{\partial I}{\partial y'} = I[u,v+1]-I[u+1,v]\)
- Handle image border, e.g., no change

Local Edge Detectors - Convolution
- Historically several local edge operators based on derivatives
 - Simple local weighting over small set of pixels
- For example Sobel operator
 - First derivatives in x and y
 - Weighted sum
 - 3x3 mask for symmetry
 - Today can do better with larger masks, fast algorithms, faster computers

Convolution and Derivatives
- Smooth and then take derivative
 - 1D example
Derivatives and Convolutions

- Another useful identity for convolution is
 \[\frac{d}{dx}(A \ast B) = (\frac{d}{dx} A) \ast B = A \ast (\frac{d}{dx} B) \]
 - Use to skip one step in edge detection

Area of Support for Derivative Operators

- Directional first derivatives and second derivative (Laplacian) of Gaussian
 - Sigma controls scale, larger yields fewer edges

Derivatives Using Convolution

- When smoothing all weights of mask \(h \) are positive
 - Sum to 1
 - Maximum weight at center of mask
- For derivatives have negative weights
 - Compute differences (derivatives)
 - E.g., Laplacian \(H = \nabla^2 \)
 - Sum to 0

Approximation to Laplacian of Gaussian

\[(A \ast G) - (A \ast I) = A \ast (G - I) = \nabla^2 G \ast A = \nabla^2 (A \ast G) \]

Linear Operators

- Linear shift invariant (LSI) system
 - Given a “black box” \(h \): \(f \longrightarrow h \longrightarrow g \)
 - Linearity: \(af_1 + bf_2 \longrightarrow h \longrightarrow ag_1 + bg_2 \)
 - Shift invariance: \(f(x-u) \longrightarrow h \longrightarrow g(x-u) \)
- Convolution with arbitrary \(h \) equivalent to these properties
 - Beyond this course to show it
- Linearity is “simple to understand” but real world not always linear
 - E.g., saturation effects
Gradient Magnitude

- Also use smoothed image
 \[\| \nabla(I * h_\sigma) \| = \sqrt{\left(\frac{\partial}{\partial x}(I * h_\sigma) \right)^2 + \left(\frac{\partial}{\partial y}(I * h_\sigma) \right)^2} \]

What Makes Good Edge Detector

- Goals for an edge detector
 - Minimize probability of multiple detection
 - Two pixels classified as edges corresponding to single underlying edge in image
 - Minimize probability of false detection
 - Minimize distance between reported edge and true edge location
 - Canny analyzes in detail 1D step edge
 - Shows that derivative of Gaussian is optimal with respect to above criteria
 - Analysis does not extend easily to 2D

Canny Edge Detector

- Based on gradient magnitude and direction of Gaussian smoothed image
 - Magnitude: \[\| \nabla(G_\sigma * I) \| \]
 - Direction (unit vector): \[\frac{\nabla(G_\sigma * I)}{\| \nabla(G_\sigma * I) \|} \]
- Ridges in gradient magnitude
 - Peaks in direction of gradient (normal to edge) but not along edge
- Hysteresis mechanism to threshold strong edges
 - Ridge pixel above lo threshold
 - Connected via ridge to pixel above hi threshold

Canny Edge Definition

- Let \((\delta_x, \delta_y) = \frac{\nabla(G_\sigma * I)}{\| \nabla(G_\sigma * I) \|} \)
 - Note compute without explicit square root
- Let \(m = \| \nabla(G_\sigma * I) \|^2 \)
- Non-maximum suppression (NMS)
 - \(m(x,y) > m(x+\delta_x(x,y), y+\delta_y(x,y)) \)
 - \(m(x,y) \geq m(x-\delta_x(x,y), y-\delta_y(x,y)) \)
 - Select “ridge points”
- Still leaves many candidate edge pixels
 - E.g., \(\sigma = 1\)

Canny Thresholding

- Two level thresholding of candidate edge pixels (those that survive NMS)
 - Above lo and connected to pixel above hi
- Start by keeping (classifying as edges) all candidates above hi threshold
 - Recursively if pixel above lo threshold and adjacent to an edge pixel keep it
- Perform recursion using bfs/dfs
 - E.g., \(\sigma = 1\), \(lo = 5\), \(hi = 10\), \(lo = 10\), \(hi = 20\)

Multiscale Edges

- Multi-scale image
 \[I(x,y,\sigma) = I(x,y) * G_\sigma(x,y) \]
- Extract edges at across scales
 - Notion of scale-space introduced by Witkin
Scale Space

- As scale increases
 - edge position can change
 - edges can disappear
 - new edges are not created

- Important to consider different scales
 - Or know certain scale is important a priori