Flexible Templates

Daniel Huttenlocher
Flexible Template Matching

- Pictorial structures
 - Parts connected by springs and appearance models for each part
 - Used for human bodies, faces
 - Fischler & Elschlager, 1973 – considerable recent work
Formal Definition of Model

- Set of parts \(V = \{v_1, ..., v_n\} \)
- Configuration \(L = (l_1, ..., l_n) \)
 - Specifying locations of the parts
- Appearance parameters \(A = (a_1, ..., a_n) \)
 - Model for each part
- Edge \(e_{ij}, (v_i, v_j) \in E \) for connected parts
 - Explicit dependency between part locations \(l_i, l_j \)
- Connection parameters \(C = \{c_{ij} \mid e_{ij} \in E\} \)
 - Spring parameters for each pair of connected parts
Flexible Template Algorithms

- Difficulty depends on structure of graph
 - Which parts connected and form of constraint
- General case exponential time
 - Consider special case in which parts translate with respect to common origin
 - E.g., useful for faces

- Parts $V = \{v_1, \ldots, v_n\}$
- Distinguished central part v_1
- Spring c_{i1} connecting v_i to v_1
- Quadratic cost for spring
Efficient Algorithm for Central Part

- Location $L = (l_1, \ldots, l_n)$ specifies where each part positioned in image
- Best location $\min_L (\sum m_i(l_i) + d_i(l_i, l_1))$
 - Part cost $m_i(l_i)$
 - Measures degree of mismatch of appearance a_i when part v_i placed at each of h locations, l_i
 - Deformation cost $d_i(l_i, l_1)$
 - Spring cost c_{i1} of part v_i measured with respect to central part v_1
 - E.g., quadratic or truncated quadratic function
 - Note deformation cost zero for part v_1 (wrt self)
Central Part Model

- Spring cost c_{ij}: $i=1$, ideal location of l_j wrt l_1
 - Translation $o_j = r_j - r_1$
 - $T_j(x) = x + o_j$
- Spring cost deformation from this ideal
 - $\|l_j - T_j(l_1)\|^2$
Consider Case of 2 Parts

- $\min_{l_1,l_2} (m_1(l_1) + m_2(l_2) + \|l_2 - T_2(l_1)\|^2)$
 - Where $T_2(l_1)$ transforms l_1 to ideal location with respect to l_2 (offset)

- $\min_{l_1} (m_1(l_1) + \min_{l_2} (m_2(l_2) + \|l_2 - T_2(l_1)\|^2))$
 - But $\min_x (f(x) + \|x - y\|^2)$ is a distance transform

- $\min_{l_1} (m_1(l_1) + D_{m_2}(T_2(l_1)))$

- Sequential rather than simultaneous min
 - Don’t need to consider each pair of positions for the two parts because a distance
 - Just distance transform the match cost function, m
Overall Computation for 2 Parts

- Image and model (translation)
- Match cost of each part $m_1(l_1), m_2(l_2)$
- Distance transform of $m_2(l_2)$
- $\min_{l_1} (m_1(l_1) + DT_{m_2}(T_2(l_1)))$
Star Graph – Central Reference Part

- \(\min_L (\sum_i (m_i(l_i) + d_i(l_i,l_1))) \)
- \(\min_L (\sum_i m_i(l_i) + \| l_i - T_i(l_1) \| ^2) \)
 - Quadratic distance between location of part \(v_i \) and ideal location given location of central part

- \(\min_{l_1} (m_1(l_1) + \sum_{i>1} \min_{l_i} (m_i(l_i) + \| l_i - T_i(l_1) \| ^2)) \)
 - i-th term of sum minimizes only over \(l_i \)

- \(\min_{l_1} (m_1(l_1) + \sum_{i>1} D_{m_i}(T_i(l_1))) \)
 - Because \(D_f(x) = \min_y (f(y) + \| y-x \| ^2) \)
Star Graph

- Simple overall computation
 - Match cost $m_i(l_i)$ for each part at each location
 - Distance transform of $m_i(l_i)$ for each part other than reference part
 - Shifted by ideal relative location $T_i(l_1)$ for that part
 - Sum the match cost for the first part with the distance transforms for the other parts
 - Find location with minimum value in this sum array (best match)

- DT allows for flexibility in part locations
Overall Computation for Star Graph

- Part costs, $O(h)$ time each, total $O(hn)$

- Distance transform non-reference part costs, sum to get MAP location, $O(mn)$ time
More General Flexible Templates

- Efficient computation using distance transforms for any tree-structured model
 - Not limited to central reference part – star

- Two differences from reference part case
 - Relate positions of parts to one another using tree-structured recursion
 - Solve with Viterbi or forward-backward algorithm
 - Parameterization of distance transform more complex – transformation T_{ij} for each connected pair of parts
General Form of Problem

- Best location can be viewed in terms of probability or cost (negative log prob.)
 - \(\max_L p(L|I,\Theta) = \arg\max_L p(I|L,A)p(L|E,C) \)
 - \(\min_L \sum_v m_j(l_j) + \sum_E d_{ij}(l_i,l_j) \)
 - \(m_j(l_j) \) – how well part \(v_j \) matches image at \(l_j \)
 - \(d_{ij}(l_i,l_j) \) – how well locations \(l_i,l_j \) agree with model (spring connecting parts \(v_i \) and \(v_j \))
- Difficulty of maximization/minimization depends on form of graph and pairwise cost
Minimizing Over Tree Structures

- Use dynamic programming to minimize
 \[\sum_{v_j} m_j(l_j) + \sum_{E} d_{ij}(l_i, l_j) \]

- Can express as function for pairs \(B_j(l_i) \)
 - Cost of best location of \(v_j \) given location \(l_i \) of \(v_i \)

- Recursive formulas in terms of children \(C_j \) of \(v_j \)
 - \(B_j(l_i) = \min_{l_j} \left(m_j(l_j) + d_{ij}(l_i, l_j) + \sum_{C_j} B_c(l_j) \right) \)
 - For leaf node no children, so last term empty
 - For root node no parent, so second term omitted
Efficient Algorithm for Trees

- MAP estimation algorithm
 - Tree structure allows use of Viterbi style dynamic programming
 - $O(nh^2)$ rather than $O(h^n)$ for h locations, n parts
 - Still slow to be useful in practice (h in millions)
 - Couple with distance transform method for finding best pair-wise locations in linear time
 - Resulting $O(nh)$ method

- Similar techniques allow sampling from posterior distribution in $O(nh)$ time
 - Using forward-backward algorithm
O(nh) Algorithm for MAP Estimate

- Express $B_j(l_i)$ in recursive minimization formulas as a DT $D_f(T_{ij}(l_i))$
 - Cost function
 - $f(y) = m_j(T_{ji}^{-1}(y)) + \sum_{c_j} B_c(T_{ji}^{-1}(y))$
 - T_{ij} maps locations to space where difference between l_i and l_j is a squared distance
 - Distance zero at ideal relative locations
 - Yields n recursive equations
 - Each can be computed in $O(hD)$ time
 - D is number of dimensions to parameter space but is fixed (D generally 2 to 4)
Sampling the Posterior

- Generate good possible matches as hypotheses
 - Locations where posterior $p(L|I, \Theta)$ large
 - Validate using another technique
 - Here use a correlation-like measure (Chamfer)
- Computation similar to MAP estimation
 - Recursive equations, one per part
 - Ability to solve each equation in linear time
 - Linear time dynamic programming approximation to Gaussian using box filters
 - Running time under a minute for person model
Sampling Approach

- Marginal distribution for location \(l_r \) of (arbitrarily chosen) root part
 \[
 p(l_r|I, \Theta) = \sum_{L \setminus l_r} (\prod_V p(I|l_i, a_i) \prod_E p(l_i, l_j|c_{ij}))
 \]
- Can be computed efficiently due to tree structured dependencies
 \[
 p(l_r|I, \Theta) \propto p(I|l_r, a_r) \prod_{Ch} s_c(l_r)
 \]
 - And fast convolution when \(p(l_i, l_j|c_{ij}) \) Gaussian
 \[
 s_j(l_i) \propto \sum_{l_j} \left(p(I|l_j, a_j) p(l_i, l_j|c_{ij}) \prod_{Ch} s_c(l_j) \right)
 \]
- Sample location for root from marginal
 - Sample from root to leaves using \(p(l_j|l_i, I, \Theta) \)
Samples From Posterior
Sampling from Proposal Distribution

- Can use to address limitations of models
 - Non-Gaussian pairwise constraints
 - Non-independence of individual part appearance
- Use model that factors to propose high probability answers according to a simpler model
- Maximize a less tractable criterion only for those sample configurations
Weakly Supervised Learning

- Consider large number of initial patch models to generate possible parts
 - Ranked by likelihood of data given part
- Generate all pairwise models formed by two initial patches
- Consider all sets of reference parts for fixed k
- Greedily add parts based on pairwise models to produce initial models
 - One per reference set
Learning Spatial Model

- Estimate pairwise spatial models for all pairs of patches – maximum likelihood
- Consider all k-tuples as root sets
- Use pairwise models to approximate true spatial model
 - Exact for 2-cliques (1-fan, star graph)
- Use EM to update model
 - Iteratively improve both appearance and spatial models
A More Accurate Form of Model

- Independent part appearance can overcount evidence when parts overlap
 - Address by changing form of image likelihood

- POP – patchwork of parts [AT07]
 - More accurate model that accounts for overlapping parts
 - Average probabilities of patches that overlap
 - Distribution does not factor, can’t compute efficiently
 - Can sample efficiently from factored distribution and then maximize POP criterion
Example Learned Models

- Star graph (one fan)
 - 24x24 patches
 - Reference part in bold box
 - Blue ellipse 2σ level set of Gaussian

Side View of Car

Side View of Bicycle
Spatial Models for Human Pose

- Widespread use of kinematic tree models
 - Encode relationships between rigid parts connected by joints (2D and 3D)
 - Enables efficient exact inference/global optimization of pose given model and data
Limitations of Kinematic Trees

- Only represent relationships between connected parts
- Coordination between limbs not encoded
 - Critical for balance and many activities

Equally good under tree model
Addressing Limitations

- Sampling based approaches
 - Probabilistic model
 - Sample high posterior probability poses and verify using other means (e.g., IF01, FH05)
 - Tractable because posterior factors

- Conditional random fields
Our Approach: Richer Spatial Model

- Latent variables to encode additional relationships – e.g., between upper limbs
 - Low order (small cliques) to ensure efficient optimization/inference

- In contrast to simply adding constraints which can result in large clique
 - Running time exponential in clique size
Learning Latent Variable Models

- First learn tree model [FH00,FH05]
 - Maximum likelihood estimation
 - Learn connections between parts and spatial relations
- Yields kinematic tree automatically
 - Lowest variability connections between parts
- Example using 240 labeled side-walking frames in CMU HumanID dataset
 - Shown at mean pose
Identify Violations of Tree Model

- Conditional independence
 - Parts with common “parent” should have uncorrelated locations given location of parent

- Consider simple 2D human body model
 - Pairwise relations parameterized by position, orientation and scale

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Lf. Arm</th>
<th>Lf. Leg</th>
<th>Rt. Arm</th>
<th>Rt. Leg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>1.00</td>
<td>0.00</td>
<td>-0.00</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>Lf. Arm</td>
<td>0.00</td>
<td>1.00</td>
<td>-0.58</td>
<td>-0.83</td>
<td>0.67</td>
</tr>
<tr>
<td>Lf. Leg</td>
<td>-0.00</td>
<td>-0.58</td>
<td>1.00</td>
<td>0.61</td>
<td>-0.43</td>
</tr>
<tr>
<td>Rt. Arm</td>
<td>-0.06</td>
<td>-0.83</td>
<td>0.61</td>
<td>1.00</td>
<td>-0.59</td>
</tr>
<tr>
<td>Rt. Leg</td>
<td>0.00</td>
<td>0.67</td>
<td>-0.43</td>
<td>-0.59</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Correlation in orientation given torso location
Test for Underlying Explanation

- Violations of conditional independence correspond to additional constraints
 - But don’t want to model with large clique
- Determine whether simple parametric characterization of these constraints
 - Use factor analysis to identify common factor
 \[Y = \mathcal{N}(AX, \Lambda) \]
 - Factor loading vector A controls how scalar factor X affects variables Y
 - For human walking yields a single highly predictive gait-cycle parameter ("swing")
Summary of Model Learning

- Learn a tree model from labeled training data (max likelihood estimation)
- Identify parts that violate conditional independence of tree model
 - With respect to common parent
- Use factor analysis to discover underlying control variable(s)
- Introduce these latent variable(s) into the tree model
 - Yielding tree-like model
Inference Using These Models

- When value of latent variable is fixed, have a tree
 - Efficient exact inference using Viterbi, forward or belief propagation algorithms
- Optimize over range of values of latent variable
- Use generalized distance transform methods to accelerate running time
 - Still exact estimation (global optimum)
Examples Using Brown MOCAP Data

- MAP estimate of best pose, single frame

Ground Truth, Common Factor Model, Tree Model, Clique Model Using LBP
Results on Brown Sequence

- Per frame error, averaged over joints

- Per joint error, averaged over frames

<table>
<thead>
<tr>
<th></th>
<th>shoulder</th>
<th>elbow</th>
<th>wrist</th>
<th>hip</th>
<th>knee</th>
<th>ankle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>4.8</td>
<td>5.5</td>
<td>8.6</td>
<td>4.2</td>
<td>4.4</td>
<td>5.4</td>
</tr>
<tr>
<td>Tree</td>
<td>9.1</td>
<td>11.1</td>
<td>19.4</td>
<td>6.4</td>
<td>6.6</td>
<td>28.6</td>
</tr>
<tr>
<td>LBP</td>
<td>9.9</td>
<td>11.9</td>
<td>20.5</td>
<td>6.4</td>
<td>5.3</td>
<td>20.5</td>
</tr>
</tbody>
</table>
Examples

- Common factor model

- Tree model