CS 664
Visual Motion

Daniel Huttenlocher
Visual Motion

- Over sequence of images can determine which pixels move where
- Differs from motion in the world
 - Camera motion
 - Pan, tilt, zoom
 - Motion parallax
 - Information about depth from camera motion
 - Scene motion
 - Reveals independent objects and behaviors
 - Un-detectable motion
 - No/low intensity variation
Motion Analysis in Video

- Video insertion
 - Compute motion in one image sequence
 - Use to transform frames of another sequence and superimpose
 - Today used to insert signs and markings into sporting events

- Panoramic mosaics with variations in depth
Estimating Visual Motion

- Historically two different approaches
 - Direct methods, based on local image derivatives at each pixel
 - Feature based methods, sparse correspondence

- We will focus on direct methods
 - Used most in practice
 - Recover image motion from spatio-temporal variations in brightness
 - Dense estimates but can be sensitive to variations in appearance
Direct Motion Estimation Methods

- Based on the following assumptions
 - Every pixel in image I goes to some location in subsequent image J
 - Overall brightness of images I, J does not change (much)

- Called brightness constancy equation
 \[I(x,y) \approx J(x+u(x,y), y+v(x,y)) \]
Using Brightness Constancy

- Minimization formulation
 - Seek \((u(x,y), v(x,y))\) minimizing error
 \[(I(x,y) - J(x+u(x,y), y+v(x,y)))^2\]
 - Not practical to search explicitly!

- Linearization
 - Relate motion to image derivatives
 - Gradient constraint
 - Assuming small \(u, v\) (on order of a pixel)
 - First order term of Taylor series expansion of brightness constancy
Gradient Constraint

- One-dimensional example – linearization
 - Estimate displacement d using derivative
 - Two functions $f(x)$ and $g(x)=f(x-d)$
 - Taylor series expansion
 \[f(x-d) = f(x) - d f'(x) + E \]
 - Where f' denotes derivative
 - Now write difference as
 \[f(x)-g(x) = d f'(x) + E \]
 - Neglecting higher order terms
 \[d = \frac{(f(x)-g(x))}{f'(x)} \]
 - Note only for small d
Gradient Constraint
(or Optical Flow Constraint)

- Same approach extends naturally to 2D

\[I(x,y) \approx J(x+u,y+v), \; u=u(x,y), \; v=v(x,y) \]

- Assume time-varying image intensity well approximated by first order Taylor series

\[J(x+u,y+v) \approx I(x,y)+I_x(x,y) \cdot u+I_y(x,y) \cdot v+I_t \]

- Substituting

\[I_x(x,y) \cdot u+I_y(x,y) \cdot v \approx -I_t \]

- Using gradient notation

\[\nabla I \cdot (u,v) \approx -I_t \]

- Linear constraint on motion \((u,v)\) at each pixel

- Can only estimate motion in gradient direction
Aperture Problem (Normal Flow)

- Can only measure motion in direction normal to edge (along gradient)
Aperture Problem (Normal Flow)

- Gradient constraint defines line in (u,v) space
 \[\nabla I \cdot (u,v) \approx -I_t \n\]
- Methods based solely on per pixel estimates don’t work well
Combining Local Constraints

- Each pixel defines linear constraint on possible \((u,v)\) displacement
 - For set of pixels with same displacement combine constraints to get estimate
 - For pixels with different displacements, somehow identify that is case
Patch Translation [Lucas-Kanade]

Assume a single velocity for all pixels within an image patch

\[E(u, v) = \sum_{x, y \in \Omega} \left(I_x(x, y)u + I_y(x, y)v + I_t \right)^2 \]

Minimizing

\[
\begin{bmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2 \\
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
\end{bmatrix}
= -\begin{bmatrix}
\sum I_x I_t \\
\sum I_y I_t \\
\end{bmatrix}
\]

\[
\left(\sum \nabla I \nabla I^T \right) \vec{\tilde{U}} = -\sum \nabla II_t
\]

LHS: sum of the 2x2 outer product of the gradient vector
The Aperture Problem

Let \(M = \sum (\nabla I)(\nabla I)^T \) and \(b = \begin{bmatrix} -\sum I_x I_t \\ -\sum I_y I_t \end{bmatrix} \)

- **Algorithm:** At each pixel compute \(u \) by solving \(Mu = b \)

- \(M \) is singular if all gradient vectors point in the same direction
 - e.g., along an edge
 - of course, trivially singular if the summation is over a single pixel
 or there is no texture
 - i.e., only *normal flow* is available (aperture problem)

- Corners and textured areas are OK
Least Squares Solution

- \mathbf{u} minimizing $\mathbf{M}\mathbf{u} = \mathbf{b}$
- Compute $(\mathbf{M}^\top\mathbf{M})^{-1} \mathbf{M}^\top\mathbf{b}$
 - Method of normal equations, can derive from setting partial derivatives to zero
 - Closed form for 2x2

$$
\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \mathbf{A}^{-1} = \frac{1}{(ad-bc)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
$$

Where $\det(\mathbf{A}) = ad-bc$ not (near) zero
SSD Surface in Textured Area
SSD Surface at an Edge
SSD in Homogeneous Area
Translational Motion

- Can estimate small translation over local patch around each pixel
 - Fast using box sums
 - Note relation to corner detection
 - Poor estimate if matrix nearly singular
 - Also poor if patch contains more than one underlying motion

- Improvements
 - Multiple motions – robust statistical techniques
 - Larger translations – pyramid methods
Multiple Motions

- Robust statistical techniques for finding predominant motion in a region
- Consider approach of iteratively reweighted least squares (IRLS)
 - As illustration of robust methods
- Generalize minimization problem to
 \[
 \min_u \| W(Mu - b) \|
 \]
 - Weight matrix \(W \) is diagonal
 - Lessen importance of pixels that don’t match
 - Iterate to find “good” weights
 - Note in unweighted case \(W \) is identity matrix
Finding Predominant Motion

- Minimization generalizes in obvious way
 \[u^* = (M^T W^2 M)^{-1} M^T W^2 b \]

- Determining good weights to use
 - Start by computing least squares solution, \(u^0 \)
 - Iteratively compute better solutions
 - Compute error for each pixel based on previous solution \(u^{k-1} \) and use that to set weight per pixel
 - Depends on initial solution being good enough to allow “bad pixels” to have largest error
 - Have to measure error based on image intensity matches, it’s the only thing we can measure
Updating Weights

- To solve for u^k given u^{k-1}
 - Create weights $W^k = \text{diag}(w_1^k \ldots w_n^k)$ where

 $$w_i^k = \begin{cases}
 1 & \text{if } r_i^{k-1} \leq c \\
 c/r_i^{k-1} & \text{otherwise}
 \end{cases}$$

- Where r_i^{k-1} is measure of error at i-th pixel with motion estimate from iteration $k-1$
 - Compare i-th pixel value to matching pixel of other image (using u^{k-1} for correspondence)
 - And c is set based on robust measure of good versus bad data, such as median
 - Common value is $1/.6745 \text{median}(r_i^{k-1})$
Weights Example

\[
\begin{array}{ccc}
8 & 7 & 5 \\
6 & 4 & 4 \\
5 & 5 & 4 \\
\end{array}
\]

\[
\begin{array}{ccc}
8 & 7 & 4 \\
6 & 5 & 3 \\
11 & 10 & 10 \\
\end{array}
\]

\[u^{k-1}\]

\[r_i^{k-1}: 0,0,1,0,1,1,6,5,6\]

\[w_i^k: 1,1,1,1,1,1,.24,.29,.24\]

\[\text{median} = 1\]
\[c \approx 1.48\]
Global Motion Estimation

- Estimate motion vectors that are parameterized over some region
 - Each vector fits some low-order model of how vectors change

- Affine motion model is commonly used
 \[u(x,y) = a_1 + a_2x + a_3y \]
 \[v(x,y) = a_4 + a_5x + a_6y \]

- Substituting into gradient constraint eqn.
 \[I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) \approx -I_t \]
 - Each pixel provides a linear constraint in six unknowns
Affine Transformations

- Consider points \((x,y)\) in plane rather than vectors for the moment
 - Linear transformation and translation
 \[
 x' = a_1 + a_2 x + a_3 y
 \]
 \[
 y' = a_4 + a_5 x + a_6 y
 \]
 - In matrix form \(A(z) = Lz + b\)
 \[
 \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_2 & a_3 \\ a_5 & a_6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_1 \\ a_4 \end{pmatrix}
 \]
 - Maps any triangle to any triangle
 - Defined by three corresponding pairs of points
Why Affine Transformations

- Simple (and often inaccurate) model of projection
 - Point \((x,y,z)\) in space maps to \((x,y)\) in image
 - Orthographic or parallel projection

- Somewhat reasonable model for telephoto lens

- Yields affine transformation of plane for viewing “flat objects”
 - 3D rotation, translation followed by orthographic projection and scaling
Affine Motion Estimation

- Minimization problem become that of estimating the parameters a_1, \ldots, a_6
 - Rather than just two parameters u, v
- Still (over-constrained) linear system but in more unknowns
 - Again use least squares to solve
- Separable into two independent 3 variable problems
 - a_1, a_2, a_3 reflect only u-component of motion
 - a_4, a_5, a_6 reflect only v-component of motion
Affine Motion Equations

- Again compute \((D^TD)^{-1} D^Tt\)
 - Or (re)weighted version for IRLS
- Now two 3x3 problems, one for \(I_x\) and one for \(I_y\), as opposed to single 2x2 problem
- Problem for \(I_x\) and u motion (\(I_y\) analogous)
 - \(T\) remains same, \(D\) changes

\[
D = \begin{pmatrix}
I_{x1} & x_1 & I_{x1} & y_1 & I_{x1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
I_{xn} & x_n & I_{xn} & y_n & I_{xn}
\end{pmatrix}
\]
Multiple (Layered) Motions

- Combining global parametric motion estimation with robust estimation
 - Calculate predominant parameterized motion over entire image (e.g., affine)
 - Corresponds to largest planar surface in scene under orthographic projection
 - If doesn’t occupy majority of pixels robust estimator will probably fail to recover its motion
 - Outlier pixels (low weights in IRLS) are not part of this surface
 - Recursively try estimating their motion
 - If no good estimate, then remain outliers
Other Global Motion Models

- The affine model is simple but not that accurate in some imaging situations
 - For instance “pinhole” rather than “parallel” camera model for closer objects
 - Non-planar surfaces
 - Explicit modeling of motion parallax

- Projective planar case

\[
x' = \frac{(h_1 + h_2 x + h_3 y)(h_7 + h_8 x + h_9 y)}{(h_1 + h_2 x + h_3 y)(h_7 + h_8 x + h_9 y)}
\]

\[
y' = \frac{(h_4 + h_5 x + h_6 y)(h_7 + h_8 x + h_9 y)}{(h_4 + h_5 x + h_6 y)(h_7 + h_8 x + h_9 y)}
\]

and \(u = x' - x, \ v = y' - y\)

- 3D models such as residual planar parallax
Coarse to Fine Motion Estimation

- Estimate residual motion at each level of Gaussian pyramid

\[
\begin{align*}
1/2^k \text{ res} & \\
\vdots & \\
1/2 \text{ res} & \\
\text{Original} & \\
\end{align*}
\]

Pyramid of image I

\[
\begin{align*}
I^0, J^0 & \\
I^1, J^1 & \\
\vdots & \\
I^k, J^k & \\
\end{align*}
\]

Pyramid of image J
Coarse to Fine Estimation

- Compute M^k, estimate of motion at level k
 - Can be local motion estimate (u^k, v^k)
 - Vector field with motion of patch at each pixel
 - Can be global motion estimate
 - Parametric model (e.g., affine) of dominant motion for entire image
 - Choose max k such that motion about one pixel

- Apply M^k at level $k-1$ and estimate remaining motion at that level, iterate
 - Local estimates: shift I^k by $2(u^k, v^k)$
 - Global estimates: apply inverse transform to J^{k-1}
Global Motion Coarse to Fine

- Compute transformation T_k mapping pixels of I^k to J^k
- Warp image J^{k-1} using T^k
 - Apply inverse of T^k
 - Double resolution of T^k (translations double)
- Compute transformation T^{k-1} mapping pixels of I^k to warped J^{k-1}
 - Estimate of “residual” motion at this level
 - Total estimate of motion at this level is composition of T^{k-1} and resolution doubled T^k
 - In case of translation just add them
Affine Mosaic Example

- Coarse-to-fine affine motion
 - Pan tilt camera sweeping repeatedly over scene
- Moving objects removed from background
 - Outliers in motion estimate, use other scans
SSD

- An alternative to gradient based methods is template matching
 - Treat a rectangle around each pixel as a “template” to find best match in other image
 - Search over possible translations minimizing some error criterion (or maximizing quality)
 - Generally use sum squared difference (SSD)
 \[\sum \sum (I(x,y) - J(x+u,y+v))^2 \]
 - Sometimes compute cross correlation
 - Compute over local neighborhood