1. Introduction

Computer Vision
- Machines that “see”
 - Broad field, any course will cover a subset of problems and techniques
- Closely related fields of study
 - Artificial intelligence and machine learning (CS)
 - Spatial statistics (Math/Stats)
 - Image processing (EE/CE)
 - Algorithms and optimization (CS/OR)
 - Optics and reflectance models (Physics)
 - Human visual perception and cognition (Psych)
 - Animal vision (Neuroscience)

Preparation
- Background in
 - Algorithms and data structures
 - Writing code with attention to efficiency
 - Basic probability
 - Linear algebra
- Some degree of mathematical sophistication
 - Ability to learn new math along the way without too much effort

Course Requirements
- Readings for class
- Short in-class quizzes
- Two programming assignments
 - Probably easiest in C/C++ because of libraries such as OpenCV
- Open ended final project on topic of your choice

Applications of Computer Vision
- Computer vision increasingly useful as digital images become ubiquitous
 - But still many simple-seeming problems still beyond state of art
- Wide range of areas
 - Image and video enhancement for consumer and entertainment applications
 - Automatic detection of faces and license plates for privacy, recognition for security
 - Automated inspection for industrial applications
 - Robotic automation and user assistance

Applications
- Industrial inspection
 - Wide range of industries from electronics to product labels to food
 - Match images to ideal prototypes
 - Highly controlled imaging conditions
Applications

- License plate reading
 - Roads and parking
 - E.g., garages, central London
 - License plate finding and character recognition
 - Structured location of plate

Applications

- Face detection and recognition
 - Finding faces in cluttered images
 - Recognizing faces (more controlled conditions)
 - Obscuring for privacy
 - E.g., Google’s Streetview

Applications

- Image cleanup (inpainting)
 - Replace pixels by filling in surrounding image
 - Model as diffusion or spatial statistical process
 - Texture challenging

Applications

- Image compositing and synthesis
 - Image/video insertion
 - Panoramic images by stitching together multiple photos
 - Merging best of several photos together

Applications

- Robotics
 - Ego-based and environment-based cameras
 - Integration of different sensing modalities
 - Lidar, radar, ir

Active Sensing Helps But...

- Lidar data provides cloud of points
 - Still “image-like” but with distances instead of intensities (or both)
- Still a vision problem
 - Analogous to working with stereo data
Applications

- Driving assistance (limited)
 - Monitor freeway lane change and forward vehicles

Visual Road Following

- Mobileye lane departure warning product

Computer Vision Algorithms

- Making things run fast an important part of practical computer vision techniques
 - Both algorithms and attention to coding details
- Dynamic programming (DP) common
 - Methods that cache solutions to sub-problems rather than re-computing them
- Applies to problems that can be decomposed into sequence of stages
 - Each stage expressed in terms of results of fixed number of previous stages

Basic Example

- Consider following problem
 - For every pixel in an m×n image, sum all the pixel values in a w×h window around the pixel

\[
\begin{array}{ccc}
1 & 0 & 1 \\
1 & 2 & 3 \\
0 & 1 & 1
\end{array}
\]

w=3

- Naive method takes \(O(mnwh)\) time
 - 4 nested loops
 - Solve in \(O((m+w)(n+h))\) time
 - Low constants, faster even for small windows

Simplify: What About 1D?

- For every element in an n-vector sum all elements in a width w interval

\[
\begin{array}{cccccc}
1 & 0 & 1 & 2 & 3 & 2 & 0 & 1 & 1 \\
1 & 2 & 3 & 7 & 5 & 3 & 2 & 2
\end{array}
\]

w=3

- Running sum – slide window of width w
 - Add entering element, subtract exiting one
 - Time independent of width w

2D Sums from 1D Sums

- Compute horizontal sums using sliding window
 - On result compute vertical sums
 - This gives overall sum

 \[
 \begin{array}{cccc}
 1 & 0 & 1 & 2 \\
 1 & 2 & 3 & 7 \\
 0 & 1 & 1 & 1
 \end{array}
 \]

- Running time independent of w,h
 - Just add 2 and subtract 2 elements per pixel
 - Extension to variable size windows
Using Integral Images

- Fast summations over arbitrary sized rectangles (intervals) – consider 1D
 - Cumulative sum
 - \(S[x] = f[0] + \ldots + f[x] \)
 - DP recurrence O(n) time
 - \(S[x] = S[x-1] + f[x] \)
 - Sum over region of \(f \) independent of size \(k \)
 - \(F[x]+\ldots+F[x+k-1] = S[x+k-1]-S[x-1] \)

N-Dimensional Integral Images

- Analogous for higher dimensions, 2D:
 - \(S[x,y] = f[0,0] + \ldots + f[0,y] + \ldots + f[x,y] \)
 - Separate recurrence per dimension
 - \(C[x,y] = C[x,y-1] + f[x,y] \) (column sum)
 - \(S[x,y] = S[x-1,y] + C[x,y] \) (total sum)
 - Or vice versa

Fast Sums Using Integral Images

- Sum over arbitrary rectangle in constant time – with integral image preprocessing
 - \(S[b_r] + S[t_l-(1,1)] - S[b_l-(1,0)] - S[t_r-(0,1)] \)

- Also sum over arbitrary region, linear time
 - Running time proportional to length of boundary not area

Fast Detection With II

- Features formed from combinations of sums over rectangles
 - For example positive and negative regions
 - Running time independent of rectangle size
- Viola and Jones use for face detection at approximately video rates

Fast Object Detection

- Classifier (set of rectangles) learned from examples

Course Outline

- Filtering
- Edge detection
- Corner Detection
- Interest points – SIFT features
- 2D Geometry/Transforms
- Matching, Chamfer and Hausdorff
- Distance Transforms
- 3D camera geometry
- Multiview geometry
- Image Panoramas
- Image stitching/mosaicing
Course Outline

- Visual motion/optical flow
- Parametric motion
- Structure from motion
- Stereo
- Markov Random Fields for stereo
- MRF Inference
- Image segmentation
- Face Recognition, Subspace Methods
- Object Category Recognition
- Flexible template models
- Tracking by Matching