CS664 Lecture #11:
Graph cuts for more than two labels

Some material taken from:

*Yuri Boykov, University of Western Ontario

sAseem Agarwala, University of Washington


http://www.csd.uwo.ca/faculty/yuri/
http://www.cs.washington.edu/homes/aseem

Announcements

= PS 1 due in a week

= Guest lecture on Tuesday by Ashish Raj
— Some vision problems in MR reconstruction
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Recap

* Linear potentials can be solved exactly

= Potts model can be turned into the
multiway cut problem
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Local improvement method

T1 = argmin E(x,x5,23,...,Tn)
Tp = argmin E(xq1,x,23,...,Tn)
T, = arg mljn E(x1,z2,23,...,7) /

= Subproblem: pick a pixel, find the label that
minimizes F, repeat
— Minimize restricted version of E (line search)
— Computes a local minimum
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Local improvement vs. Graph cuts

= Continuous vs. discrete
— No floating point with graph cuts

= Local min in line search vs. global min
= Minimize over a line vs. hypersurface
— Containing O(2") candidates

= Local minimum: weak vs. strong

— 2-approximation for the Potts model
— Within 0.15% of global min!
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Move examples

Red-blue swap move

- / .

Green expansion move

A
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The swap move algorithm

1. Start with an arbitrary labeling

2. Cycle through every label pair («, /)
2.1 Find the lowest E labeling within a single af3-
sSwap
2.2 Go there If it’s lower E than the current labeling
3. If E did not decrease In the cycle, done
Otherwise, go to step 2
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The expansion move algorithm

1. Start with an arbitrary labeling

2. Cycle through every label a

2.1 Find the lowest E labeling within a single a-
expansion
2.2 Go there If it’s lower E than the current labeling

3. If E did not decrease In the cycle, done
Otherwise, go to step 2
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Algorithm properties

= Graph cuts (only) used In key step 2.1
— On a binary sub-problem, as we’ll see

= In a cycle the energy doesn’t increase
— Convergence in O(n) cycles
e In practice, termination occurs in a few cycles

= When the algorithms converge, the
resulting labeling is a local minimum

— Even when allowing an arbitrary swap move or
expansion move
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Very large neighborhood search

= A local minimum with respect to these
moves Is the best answer In a very large
neighborhood

— For example, there are O(k 2") labelings within
a single expansion move

— Starting at an arbitrary labeling, you can get to
the global minimum in k expansion moves
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Swap move algorithm

= Let’s look at how we compute the best
swap move

— It’s basically just the two-label case we already
know about

= Quite simple for the Potts model
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Start with an arbitrary labeling
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Compute min cut on subgraph

/

= The cost of cutting an n-link clearly
depends on A and B
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End of iteration
= Return the other nodes to the graph
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Expansion move algorithm

= Most powerful graph cut method
— Widely used in practice

* Interesting theoretical properties also
— 2-approximation for Potts model
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Expansion move algorithm

Input labeling f

Green expansion
move from f

| >

— FIind green expansion move that most decreases E

e Move there, then find the best blue expansion
move, etc

e Done when no a-expansion move decreases the
energy, for any label a
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/A Potts model error bound
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optimal solution f~ local minimum f fo _ & peA
f, pgA

frsfe = g(f)<e(f?)

E(f)<E (7)< E,(F)
Summing up over all labels:

E(f)<E(f7)+E,(f7)<2E(F")
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Expansion moves In action

initial solution
@ -cxpansion

@ -expansion

@ -cxpansion

@ -expansion

For each move we choose expansion that gives the largest decrease In
the energy: binary energy minimization subproblem
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Binary sub-problem

Input labeling
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Expansion move

v @

Binary image




ExXpansion move energy

Goal: find the binary image with lowest energy

Binary image energy is a restriction of E
Depends on f,a
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Graph cuts solution

= This can be done as long as V has a
specific form (works for arbitrary D)

= Regularity constraint [KZ PAMI ’04]
— Can find cheapest a-expansion from f if

V(ia) + V(f(p), flq)) <
V(f(p),ﬂf) Bl V(O{jf(Q'))
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Regular choices of V
= Suppose that V is a metric
V(ia,a) = 0
V(a,8) = V(B,a)
V(B,9) < V(B,a)+ V(a,o)

= Then what?
V((I, O{) B v(f(p)a f(Q)) <
V(f(p)a (I) B V(O{, f(Q))
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What V’s are metrics?

= Important examples
— Potts model
— L1 distance
— Truncated L1 distance
— NOT the L2 distance (with or without
truncation)
= There iIs an easy way to check the triangle
Inequality
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Old methods: How fast do you
want the wrong answer?

Right answers SloGr imeating)
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Statistical performance

Tsukuba Sawtooth Venus Map

19 Belief prop. 1.15 7 042 ;7 631 /| 098 5 030 5 483 51 1.00 2 076 2 9.13 »

12 Compact win.| 3.36 & 3.54 & 1291 ¢| .61 ¢ 045 7 787 7 167 5 218 4 1324 9] 033 5 394 35
14 Realtime 425712 44712 150513 132 7035 6 921 & 1.53 4 1.80 31233 7 081 9 11.3515
*5 Bay. diff. 64916 11.62179 1229 71 145 8§ 072 9 929 9| 40074 72116 1839731020 1 249 2
9 Cooperative 349 9 3.65 9 14771 20310 229 14 13.41 13 25711 35211 2638171022 2 237 1
*1 SSD+MF 523175 38010 2466171 22111 09210 139715 37413 6.8215 1294 & 066 & 93510
15 Stoch. diff. 39570 4.08 11 1549151 24514 09011 1058 10 245 9 241 7 2184151 13112 779 ¢
13 Genetic 296 6 266 7149720 22112 276176 13.96 14 24910 2.89 9 23.04 16 1.04 17 1091 14
7 Pix-to-pix 51214 7.0617 1462101 23113 1.7912 1493 17 630177 11.3718 1457 101 050 7 6.83 &
6 Max flow 298 7 200 6 1510 /4] 34715 3.0077 141946 216 8 224 5 21.73 14] 3.13 17 1598 1%
*3 Scanl. opt. S0873 67815 11.94 61 40616 26415 11.90 17 944 19 1459 19 1820 12| 1.84 14 10.22 13
*2 Dyn. prog. 41201 46373 1234 & 48410 37119 1326 121 101020 15,01 20 1712 11 3.33 18 14.04 17
17 Shao 9.67 18 T7.04 16 35.63 19 42517 3.19 18 30.14 20 6.01 16 6.70 14 43.91 20| 2.36 15 33.01 20
16 Fast Correl. 9.76 19 13.85 20 2439 15| 476 18 1.87 13 22.49 18 6.48 18 10.36 77 31.29 /8| 842 20 12.68 16
18 Max surf. 111020 10.70 18 41.99 201 5.51 20 556 20 2739 19| 43615 47812 41.13 19| 4.17 1v 2788 jv
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Expansion move applications

= Lots of them, In vision and In graphics

= We’'ll look at a few really “cute” examples
— l.e., from SIGGRAPH
— Texture synthesis (“graphcut textures”)
— Photomontage
— Panoramic video textures

= Then two important ones from vision

— Stereo with sloped and curved surfaces
e Via the Potts model!

— Multi-camera stereo
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Application: texture synthesis

“Graphcut textures”
(Kwatra, Schodl, Essa, Bobick SIGGRAPH2003)
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http://www.cc.gatech.edu/cpl/projects/graphcuttextures/

Graphcuts video textures

Short video clip Long video clip
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Another example

original short clip synthetic infinite texture

=)
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Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva,
Maneesh Agrawala, Steven Drucker, Alex Colburn,
Brian Curless, David Salesin, Michael Cohen

University of Washington & Microsoft Research
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courtesy of P. Debevec
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