CS 664 Slides \#9 Multi-Camera Geometry

Prof. Dan Huttenlocher Fall 2003

Pinhole Camera

- Geometric model of camera projection
- Image plane I, which rays intersect
- Camera center C, through which all rays pass
- Focal length f, distance from I to C

Pinhole Camera Projection

- Point (X, Y, Z) in space and image (x, y) in I
- Simplified case
- C at origin in space
- I perpendicular to Z axis

$$
x=f X / Z(x / f=X / Z) \quad y=f Y / Z(y / f=Y / Z)
$$

Homogeneous Coordinates

- Geometric intuition useful but not well suited to calculation
- Projection not linear in Euclidean plane but is in projective plane (homogeneous coords)
- For a point (x, y) in the plane
- Homogeneous coordinates are ($\alpha x, \alpha y, \alpha$) for any nonzero α (generally use $\alpha=1$)
- Overall scaling unimportant

$$
(X, Y, W)=(\alpha X, \alpha Y, \alpha W)
$$

- Convert back to Euclidean plane

$$
(x, y)=(X / W, Y / W)
$$

Lines in Homogeneous Coordinates

- Consider line in Euclidean plane

$$
a x+b y+c=0
$$

- Equation unaffected by scaling so

$$
a X+b Y+c W=0
$$

$$
u^{\top} p=p^{\top} u=0 \quad \text { (point on line test, dot product) }
$$

- Where $u=(a, b, c)^{\boldsymbol{T}}$ is the line
- And $p=(X, Y, W)^{\top}$ is a point on the line u
- So points and lines have same representation in projective plane (i.e., in h.c.)
- Parameters of line
- Slope -a/b, x-intercept -c/a, y-intercept -c/b

Lines and Points

- Consider two lines

$$
a_{1} x+b_{1} y+c_{1}=0 \quad \text { and } \quad a_{2} x+b_{2} y+c_{2}=0
$$

- Can calculate their intersection as $\left(b_{1} c_{2}-b_{2} c_{1} / a_{1} b_{2}-a_{2} b_{1}, a_{2} c_{1}-a_{1} c_{2} / a_{1} b_{2}-a_{2} b_{1}\right)$
- In homogeneous coordinates

$$
u_{1}=\left(a_{1}, b_{1}, c_{1}\right) \text { and } u_{2}=\left(a_{2}, b_{2}, c_{2}\right)
$$

- Simply cross product $p=u_{1} \times u_{2}$
- Parallel lines yield point not in Euclidean plane
- Similarly given two points
$p_{1}=\left(X_{1}, Y_{1}, W_{1}\right)$ and $p_{2}=\left(X_{2}, Y_{2}, W_{2}\right)$
- Line through the points is simply $u=p_{1} \times p_{2}$

Collinearity and Coincidence

- Three points collinear (lie on same line)
- Line through first two is $p_{1} \times p_{2}$
- Third point lies on this line if $p_{3}{ }^{\mathbf{T}}\left(p_{1} \times p_{2}\right)=0$
- Equivalently if $\operatorname{det}\left[p_{1} p_{2} p_{3}\right]=0$
- Three lines coincident (intersect at one point)
- Similarly $\operatorname{det}\left[\mathrm{u}_{1} \mathrm{u}_{\mathbf{2}} \mathrm{u}_{\mathbf{3}}\right]=0$
- Note relation of determinant to cross product

$$
u_{1} \times u_{2}=\left(b_{1} c_{2}-b_{2} c_{1}, a_{2} c_{1}-a_{1} c_{2}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

- Compare to geometric calculations

Back to Simplified Pinhole Camera

- Geometrically saw $x=f X / Z, y=f Y / Z$

$$
\left(\begin{array}{c}
f X \\
f Y \\
7
\end{array}\right)=\left[\begin{array}{llll|l}
f & & & 0 \\
& f & & 0 \\
& & 1 & n \\
Y \\
Z
\end{array}\right) \quad \begin{gathered}
3 \times 4 \\
\text { Projection } \\
\text { Matrix }
\end{gathered}
$$

Principal Point Calibration

- Intersection of principal axis with image plane often not at image origin

$$
\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{y} \\
Z
\end{array}\right)=\left[\begin{array}{ccc}
f & & p_{x} \\
& 0 \\
& f & p_{y} \\
& & 1
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

CCD Camera Calibration

- Spacing of grid points
- Effectively separate scale factors along each axis composing focal length and pixel spacing

$$
\begin{aligned}
K & =\left[\begin{array}{lll}
m_{\mathbf{x}} \mathrm{f} & & \mathrm{p}_{\mathrm{x}} \\
& m_{\mathbf{y}} \mathrm{f} & \mathrm{p}_{\mathrm{y}} \\
& & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
\alpha & & \mathrm{p}_{\mathrm{x}} \\
& \beta & \mathrm{p}_{\mathrm{y}} \\
& & 1
\end{array}\right]
\end{aligned}
$$

Camera Rigid Motion

- Projection $\mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}]$
- Camera motion: alignment of 3D coordinate systems
- Full extrinsic parameters beyond scope of this course, see "Multiple View Geometry" by Hartley and Zisserman

Two View Geometry

- Point X in world and two camera centers C, C^{\prime} define the epipolar plane
- Images x, x^{\prime} of X in two image planes lie on this plane
- Intersection of line CC' with image planes define special points called epipoles, e, e'

Epipolar Lines

- Set of points that project to x in I define line e^{\prime} in I'
- Called epipolar line
- Goes through epipole e'
- A point x in I thus maps to a point on ℓ^{\prime} in I^{\prime}
- Rather than to a point anywhere in I

Epipolar Geometry

- Two-camera system defines one parameter family (pencil) of planes through baseline CC'
- Each such plane defines matching epipolar lines in two image planes
- One parameter family of lines through each epipole

- Correspondence between images

Converging Stereo Cameras

Corresponding points lie on corresponding epipolar lines

Known camera geometry so 1D not 2D search!

Motion Examples

- Epipoles in direction of motion

Forward

Final Project

- Feel free to pick any vision related topic but discuss with me first
- Email choice to me by Tuesday, 11/18
- Projects due Tuesday 12/16
- Suggested topics
- Video insertion using affine motion estimation
- Panoramic mosaics
- Synthesis of novel views from stereo
- Hausdorff based learning and matching
- Flexible template matching
- Stereo or motion using belief propagation

Fundamental and Essential Matrix

- Linear algebra formulation of the epipolar geometry
- Fundamental matrix, F, maps point x in I to corresponding epipolar line ℓ^{\prime} in I^{\prime}

$$
e^{\prime}=\mathrm{Fx}
$$

- Determined for particular camera geometry
- For stereo cameras only changes if cameras move with respect to one another
- Essential matrix, E, when camera calibration (intrinsic parameters) known

Fundamental Matrix

- Epipolar constraint

$$
x^{\prime T} F X=x^{\prime \top} l^{\prime}=0
$$

- Thus from enough corresponding pairs of points in the two images can solve for F
- However not as simple as least squares minimization because F not fully general matrix
- Consider form of F in more detail

$$
\begin{gathered}
\stackrel{\mathrm{L}}{\rightarrow} \stackrel{\mathrm{~A}}{\rightarrow} \stackrel{\ell^{\prime}}{\mathrm{F}}=\mathrm{AL}
\end{gathered}
$$

Form of Fundamental Matrix

- L: $\mathrm{x} \rightarrow \ell$
- Epipolar line e goes through x and epipole e
- Epipole determines L

$$
\begin{aligned}
& \ell=\mathrm{x} \times \mathrm{e} \\
& \ell=\mathrm{Lx} \quad \text { (rewriting cross product) }
\end{aligned}
$$

- If $e=(u, v, w)$

$$
L=\left[\begin{array}{ccc}
0 & w & -v \\
-w & 0 & u \\
v & -u & 0
\end{array}\right]
$$

- L is rank 2 and has 2 d.o.f.

Form of Fundamental Matrix

- A: $\ell \rightarrow \ell^{\prime}$
- Constrained by 3 pairs of epipolar lines

$$
\ell_{i}^{\prime}=A l_{i}
$$

- Note only 5 d.o.f.
- First two line correspondences each provide two constraints
- Third provides only one constraint as lines must go through intersection of first two
- F=AL rank 2 matrix with 7 d.o.f.
- As opposed to 8 d.o.f. in 3×3 homogeneous system

Properties of F

- Unique $3 x 3$ rank 2 matrix satisfying $x^{\top} F x=0$ for all pairs x, x^{\prime}
- Constrained minimization techniques can be used to solve for F given point pairs
- F has 7 d.o.f.
- 3×3 homogeneous ($9-1=8$), rank 2 ($8-1=7$)
- Epipolar lines $\ell=\mathrm{Fx}$ and reverse map $\ell=\mathrm{F}^{\top} \mathrm{x}^{\prime}$
- Because also $(F x)^{\boldsymbol{\top}} x^{\prime}=0$ but then $x^{\boldsymbol{\top}}\left(F^{\boldsymbol{\top}} x^{\prime}\right)=0$
- Epipoles $e^{\top \top} F=0$ and $\mathrm{Fe}=0$
- Because $\mathrm{e}^{\boldsymbol{\top} \boldsymbol{e}^{\prime}=0}=0$ for any ℓ^{\prime}; Le=0 by construction

Stereo (Epipolar) Rectification

- Given F, simplify stereo matching problem by warping images
- Common image plane for two cameras
- Epipolar lines parallel to x-axis
- Epipole at $(1,0,0)$
- Corresponding scan lines of two images

- Intel vision library: calibration and rectification

Planar Rectification

- Move epipoles to infinity
- Poor when epipoles near image

Stereo Matching

- Seek corresponding pixels in I, I'
- Only along epipolar lines
- Rectified imaging geometry so just horizontal disparity D at each pixel

$$
I^{\prime}\left(x^{\prime}, y^{\prime}\right)=I(x+D(x, y), y)
$$

- Best methods minimize energy based on matching (data) and discontinuity costs

Plane Homography

- Projective transformation mapping points in one plane to points in another
- In homogeneous coordinates

$$
\left(\begin{array}{c}
a X+b Y+c W \\
d X+e Y+f W \\
g X+h Y+i W
\end{array}\right)=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
W
\end{array}\right)
$$

- Maps four (coplanar) points to any four
- Quadrilateral to quadrilateral
- Does not preserve parallelism

Contrast with Affine

- Can represent in Euclidean plane $\mathrm{x}^{\prime}=\mathrm{Lx}+\mathrm{t}$
- Arbitrary 2×2 matrix L and 2 -vector t
- In homogeneous coordinates

$$
\left(\begin{array}{c}
a X+b Y+c W \\
d X+e Y+f W \\
W
\end{array}\right)=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
0 & 0 & i
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
W
\end{array}\right)
$$

- Maps three points to any three
- Maps triangles to triangles
- Preserves parallelism

Homography Example

- Changing viewpoint of single view
- Correspondences in observed and desired views
- E.g., from 45 degree to frontal view
- Quadrilaterals to rectangles
- Variable resolution and non-planar artifacts

Homography and Epipolar Geometry

- Plane in space π induces homography H between image planes

$$
\mathrm{x}^{\prime}=\mathrm{H}_{\pi} \mathrm{x} \text { for point } \mathrm{X} \text { on } \pi, \mathrm{x} \text { on } \mathrm{I}, \mathrm{x}^{\prime} \text { on } \mathrm{I}^{\prime}
$$

Obeys Epipolar Geometry

- Given $\mathrm{F}, \mathrm{H}_{\pi}$ no search for x^{\prime} (points on π)

$$
x^{\top} F x=0, \quad x^{\top} H_{\pi}^{\top} F x=0
$$

- Maps epipoles, $\mathrm{e}^{\prime}=\mathrm{H}_{\pi} \mathrm{e}$

Computing Homography

- Correspondences of four points that are coplanar in world (no need for F)
- Substantial error if not coplanar
- Fundamental matrix F and 3 point correspondences
- Can think of pair e,e' as providing fourth correspondence
- Fundamental matrix plus point and line correspondences
- Improvements
- More correspondences and least squares
- Correspondences farther apart

Plane Induced Parallax

- Determine homography of a plane
- Remaining differences reflect depth from plane

Plane + Parallax Correspondences

Projective Depth

- Distance between $\mathrm{H}_{\pi} \mathrm{x}$ and x^{\prime} (along I^{\prime}) proportional to distance of X from plane π
- Sign governs which side of plane

Multiple Cameras

- Similarly extensive geometry for three cameras
- Known as tri-focal tensor
- Beyond scope of this course

- Three lines
- Three points
- Line and 2 points
- Point and 2 lines

