CS 664 Slides #9
Multi-Camera Geometry

Prof. Dan Huttenlocher
Fall 2003
Pinhole Camera

- Geometric model of camera projection
 - Image plane I, which rays intersect
 - Camera center C, through which all rays pass
 - Focal length f, distance from I to C
Pinhole Camera Projection

- Point \((X,Y,Z)\) in space and image \((x,y)\) in \(I\)
 - Simplified case
 - \(C\) at origin in space
 - \(I\) perpendicular to \(Z\) axis

\[
x = \frac{fX}{Z} \quad \text{and} \quad y = \frac{fY}{Z}
\]
Homogeneous Coordinates

- Geometric intuition useful but not well suited to calculation
 - Projection not linear in Euclidean plane but is in projective plane (homogeneous coords)

- For a point \((x,y)\) in the plane
 - Homogeneous coordinates are \((\alpha x, \alpha y, \alpha)\) for any nonzero \(\alpha\) (generally use \(\alpha=1\))
 - Overall scaling unimportant
 \((X,Y,W) = (\alpha X, \alpha Y, \alpha W)\)
 - Convert back to Euclidean plane
 \((x,y) = (X/W, Y/W)\)
Lines in Homogeneous Coordinates

- Consider line in Euclidean plane
 \[ax + by + c = 0 \]
- Equation unaffected by scaling so
 \[aX + bY + cW = 0 \]
 \[u^T p = p^T u = 0 \] (point on line test, dot product)
 - Where \(u = (a, b, c)^T \) is the line
 - And \(p = (X, Y, W)^T \) is a point on the line \(u \)
 - So points and lines have same representation in projective plane (i.e., in h.c.)
 - Parameters of line
 - Slope \(-a/b \), x-intercept \(-c/a \), y-intercept \(-c/b \)
Lines and Points

- Consider two lines
 \[a_1x + b_1y + c_1 = 0 \text{ and } a_2x + b_2y + c_2 = 0 \]
 - Can calculate their intersection as
 \[\left(\frac{b_1c_2 - b_2c_1}{a_1b_2 - a_2b_1}, \frac{a_2c_1 - a_1c_2}{a_1b_2 - a_2b_1} \right) \]

- In homogeneous coordinates
 \[u_1 = (a_1, b_1, c_1) \text{ and } u_2 = (a_2, b_2, c_2) \]
 - Simply cross product \(p = u_1 \times u_2 \)
 - Parallel lines yield point not in Euclidean plane

- Similarly given two points
 \[p_1 = (X_1, Y_1, W_1) \text{ and } p_2 = (X_2, Y_2, W_2) \]
 - Line through the points is simply \(u = p_1 \times p_2 \)
Collinearity and Coincidence

- Three points collinear (lie on same line)
 - Line through first two is $p_1 \times p_2$
 - Third point lies on this line if $p_3^T(p_1 \times p_2) = 0$
 - Equivalently if $\det[p_1 \ p_2 \ p_3] = 0$

- Three lines coincident (intersect at one point)
 - Similarly $\det[u_1 \ u_2 \ u_3] = 0$
 - Note relation of determinant to cross product
 $u_1 \times u_2 = (b_1 c_2 - b_2 c_1, a_2 c_1 - a_1 c_2, a_1 b_2 - a_2 b_1)$

- Compare to geometric calculations
Back to Simplified Pinhole Camera

- Geometrically saw $x = \frac{fX}{Z}$, $y = \frac{fY}{Z}$

\[
\begin{pmatrix}
 fX \\
 fY \\
 Z
\end{pmatrix} = \begin{bmatrix}
 f & 0 & 0 \\
 0 & f & 0 \\
 1 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
 X \\
 Y \\
 Z
\end{pmatrix}
\]

3x4 Projection Matrix
Principal Point Calibration

- Intersection of principal axis with image plane often not at image origin

\[
\begin{pmatrix}
 fX + Zp_x \\
 fY + Zp_y \\
 Z
\end{pmatrix} =
\begin{bmatrix}
 f & p_x & 0 \\
 f & p_y & 0 \\
 1 & 0 & 1
\end{bmatrix}
\begin{pmatrix}
 X \\
 Y \\
 Z
\end{pmatrix}
\]

\(K = \begin{bmatrix}
 f & p_x \\
 f & p_y \\
 1 & 1
\end{bmatrix} \) (Intrinsic Calibration matrix)
CCD Camera Calibration

- Spacing of grid points
 - Effectively separate scale factors along each axis composing focal length and pixel spacing

\[
K = \begin{bmatrix}
m_x f & p_x \\
m_y f & p_y \\
1 & 1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\alpha & p_x \\
\beta & p_y \\
1 & 1
\end{bmatrix}
\]
Camera Rigid Motion

- Projection \(P = K[R|t] \)
 - Camera motion: alignment of 3D coordinate systems
 - Full extrinsic parameters beyond scope of this course, see “Multiple View Geometry” by Hartley and Zisserman
Two View Geometry

- Point X in world and two camera centers C, C’ define the epipolar plane
 - Images x,x’ of X in two image planes lie on this plane
 - Intersection of line CC’ with image planes define special points called epipoles, e,e’
Epipolar Lines

- Set of points that project to x in I define line ℓ' in I'
 - Called epipolar line
 - Goes through epipole e'
 - A point x in I thus maps to a point on ℓ' in I'
 - Rather than to a point anywhere in I
Epipolar Geometry

- Two-camera system defines one parameter family (pencil) of planes through baseline \(CC'\)
 - Each such plane defines matching epipolar lines in two image planes
 - One parameter family of lines through each epipole
 - Correspondence between images
Converging Stereo Cameras

Corresponding points lie on corresponding epipolar lines.

Known camera geometry so 1D not 2D search!
Motion Examples

- Epipoles in direction of motion

Parallel to Image Plane

Forward
Final Project

- Feel free to pick any vision related topic but discuss with me first
- Email choice to me by Tuesday, 11/18
 - Projects due Tuesday 12/16
- Suggested topics
 - Video insertion using affine motion estimation
 - Panoramic mosaics
 - Synthesis of novel views from stereo
 - Hausdorff based learning and matching
 - Flexible template matching
 - Stereo or motion using belief propagation
Fundamental and Essential Matrix

- Linear algebra formulation of the epipolar geometry
- Fundamental matrix, \(F \), maps point \(x \) in \(I \) to corresponding epipolar line \(\ell' \) in \(I' \)
 \[
 \ell' = Fx
 \]
 - Determined for particular camera geometry
 - For stereo cameras only changes if cameras move with respect to one another
- Essential matrix, \(E \), when camera calibration (intrinsic parameters) known
Fundamental Matrix

- Epipolar constraint
 \[x'^T F x = x'^T l' = 0 \]
 - Thus from enough corresponding pairs of points in the two images can solve for \(F \)
 - However not as simple as least squares minimization because \(F \) not fully general matrix

- Consider form of \(F \) in more detail

\[F = AL \]
Form of Fundamental Matrix

- **L**: \(x \rightarrow \ell

- Epipolar line \(\ell \) goes through \(x \) and epipole \(e \)
- Epipole determines \(L \)
 \[\ell = x \times e \]
 \[\ell = Lx \quad \text{(rewriting cross product)} \]
- If \(e=(u,v,w) \)

\[
L = \begin{bmatrix} 0 & w & -v \\ -w & 0 & u \\ v & -u & 0 \end{bmatrix}
\]

- \(L \) is rank 2 and has 2 d.o.f.
Form of Fundamental Matrix

- **A**: $\ell \rightarrow \ell'$
 - Constrained by 3 pairs of epipolar lines
 \[\ell'_i = A \ell_i \]
 - Note only 5 d.o.f.
 - First two line correspondences each provide two constraints
 - Third provides only one constraint as lines must go through intersection of first two

- **F=AL** rank 2 matrix with 7 d.o.f.
 - As opposed to 8 d.o.f. in 3x3 homogeneous system
Properties of F

- Unique 3x3 rank 2 matrix satisfying $x'\mathbf{F}x=0$ for all pairs x,x'
 - Constrained minimization techniques can be used to solve for F given point pairs
- F has 7 d.o.f.
 - 3x3 homogeneous (9-1=8), rank 2 (8-1=7)
- Epipolar lines $\ell'=Fx$ and reverse map $\ell=F^Tx'$
 - Because also $(Fx)^T x'=0$ but then $x^T(F^Tx')=0$
- Epipoles $e'^T F=0$ and $Fe=0$
 - Because $e'^T \ell'=0$ for any ℓ'; $Le=0$ by construction
Stereo (Epipolar) Rectification

- Given F, simplify stereo matching problem by warping images
 - Common image plane for two cameras
 - Epipolar lines parallel to x-axis
 - Epipole at $(1,0,0)$
 - Corresponding scan lines of two images
 - Intel vision library: calibration and rectification
Planar Rectification

- Move epipoles to infinity
 - Poor when epipoles near image
Stereo Matching

- Seek corresponding pixels in I, I’
 - Only along epipolar lines
- Rectified imaging geometry so just horizontal disparity D at each pixel
 \[I'(x',y') = I(x+D(x,y),y) \]
- Best methods minimize energy based on matching (data) and discontinuity costs
Plane Homography

- Projective transformation mapping points in one plane to points in another
- In homogeneous coordinates

\[
\begin{pmatrix}
 aX+bY+cW \\
 dX+eY+fW \\
 gX+hY+iW
\end{pmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{pmatrix}
 X \\
 Y \\
 W
\end{pmatrix}
\]

- Maps four (coplanar) points to any four
 - Quadrilateral to quadrilateral
 - Does not preserve parallelism
Contrast with Affine

- Can represent in Euclidean plane $x' = Lx + t$
 - Arbitrary 2x2 matrix L and 2-vector t
 - In homogeneous coordinates

$$\begin{pmatrix} aX + bY + cW \\ dX + eY + fW \\ W \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & i \end{bmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

- Maps three points to any three
 - Maps triangles to triangles
 - Preserves parallelism
Homography Example

- Changing viewpoint of single view
 - Correspondences in observed and desired views
 - E.g., from 45 degree to frontal view
 - Quadrilaterals to rectangles
 - Variable resolution and non-planar artifacts
Homography and Epipolar Geometry

- Plane in space π induces homography H between image planes

 $x' = H_\pi x$ for point X on π, x on I, x' on I'
Obeys Epipolar Geometry

- Given F, H_π no search for x' (points on π)
 $$x'^T F x = 0, \quad x^T H_\pi^T F x = 0$$
- Maps epipoles, $e' = H_\pi e$
Computing Homography

- Correspondences of four points that are coplanar in world (no need for F)
 - Substantial error if not coplanar
- Fundamental matrix F and 3 point correspondences
 - Can think of pair e,e’ as providing fourth correspondence
- Fundamental matrix plus point and line correspondences
- Improvements
 - More correspondences and least squares
 - Correspondences farther apart
Plane Induced Parallax

- Determine homography of a plane
 - Remaining differences reflect depth from plane
Plane + Parallax Correspondences

\[l' = x' \times Hx \]
Projective Depth

- Distance between $H_\pi x$ and x' (along l') proportional to distance of X from plane π
 - Sign governs which side of plane
Multiple Cameras

- Similarly extensive geometry for three cameras
 - Known as tri-focal tensor
 - Beyond scope of this course

- Three lines
- Three points
- Line and 2 points
- Point and 2 lines