

CS 664 Slides #9 Multi-Camera Geometry

Prof. Dan Huttenlocher Fall 2003

Pinhole Camera

Geometric model of camera projection

- Image plane I, which rays intersect
- Camera center C, through which all rays pass
- Focal length f, distance from I to C

Pinhole Camera Projection

- Point (X,Y,Z) in space and image (x,y) in I
 - Simplified case
 - C at origin in space
 - I perpendicular to Z axis

Homogeneous Coordinates

- Geometric intuition useful but not well suited to calculation
 - Projection not linear in Euclidean plane but is in projective plane (homogeneous coords)
- For a point (x,y) in the plane
 - Homogeneous coordinates are (αx , αy , α) for any nonzero α (generally use α =1)
 - Overall scaling unimportant

 $(X,Y,W) = (\alpha X, \alpha Y, \alpha W)$

- Convert back to Euclidean plane

(x,y) = (X/W,Y/W)

Lines in Homogeneous Coordinates

- Consider line in Euclidean plane ax+by+c = 0
- Equation unaffected by scaling so

aX+bY+cW = 0

 $u^{T}p = p^{T}u = 0$ (point on line test, dot product)

- Where $u = (a,b,c)^T$ is the line
- And $p = (X,Y,W)^T$ is a point on the line u
- So points and lines have same representation in projective plane (i.e., in h.c.)
- Parameters of line
 - Slope –a/b, x-intercept –c/a, y-intercept –c/b

Lines and Points

Consider two lines

 $a_1x+b_1y+c_1 = 0$ and $a_2x+b_2y+c_2 = 0$

- Can calculate their intersection as $(b_1c_2-b_2c_1/a_1b_2-a_2b_1, a_2c_1-a_1c_2/a_1b_2-a_2b_1)$

In homogeneous coordinates

 $u_1 = (a_1, b_1, c_1)$ and $u_2 = (a_2, b_2, c_2)$

- Simply cross product $p = u_1 \times u_2$

- Parallel lines yield point not in Euclidean plane
- Similarly given two points

 $p_1 = (X_1, Y_1, W_1) \text{ and } p_2 = (X_2, Y_2, W_2)$

- Line through the points is simply $u = p_1 \times p_2$

Collinearity and Coincidence

- Three points collinear (lie on same line)
 - Line through first two is $p_1 \times p_2$
 - Third point lies on this line if $p_3^T(p_1 \times p_2) = 0$
 - Equivalently if $det[p_1 p_2 p_3]=0$
- Three lines coincident (intersect at one point)
 - Similarly det[$u_1 u_2 u_3$]=0
 - Note relation of determinant to cross product $u_1 \times u_2 = (b_1c_2-b_2c_1, a_2c_1-a_1c_2, a_1b_2-a_2b_1)$
- Compare to geometric calculations

Back to Simplified Pinhole Camera

Geometrically saw x=fX/Z, y=fY/Z

Principal Point Calibration

Intersection of principal axis with image plane often not at image origin

$$\begin{pmatrix} fX+Zp_{x} \\ fY+Zp_{y} \\ Z \end{pmatrix} = \begin{bmatrix} f & p_{x} & 0 \\ f & p_{y} & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

CCD Camera Calibration

- Spacing of grid points
 - Effectively separate scale factors along each axis composing focal length and pixel spacing

$$K = \begin{bmatrix} m_{\mathbf{x}} f & p_{\mathbf{x}} \\ & m_{\mathbf{y}} f & p_{\mathbf{y}} \\ & & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \alpha & p_{\mathbf{x}} \\ & \beta & p_{\mathbf{y}} \\ & & 1 \end{bmatrix}$$

Camera Rigid Motion

- Projection P=K[R|t]
 - Camera motion: alignment of 3D coordinate systems
 - Full extrinsic parameters beyond scope of this course, see "Multiple View Geometry" by Hartley and Zisserman

Two View Geometry

- Point X in world and two camera centers
 C, C' define the <u>epipolar plane</u>
 - Images x,x' of X in two image planes lie on this plane
 - Intersection of line CC' with image planes define special points called <u>epipoles</u>, e,e'

Epipolar Lines

- Set of points that project to x in I define line l' in I'
 - Called epipolar line
 - Goes through epipole e'
 - A point x in I thus maps to a point on l' in I'
 - Rather than to a point anywhere in I

Epipolar Geometry

- Two-camera system defines one parameter family (pencil) of planes through <u>baseline</u> CC'
 - Each such plane defines matching epipolar lines in two image planes
 - One parameter
 family of lines
 through each epipole

Correspondence between images

Converging Stereo Cameras

e e e

Corresponding points lie on corresponding epipolar lines

Known camera geometry so 1D not 2D search!

Motion Examples

Epipoles in direction of motion

Parallel to Image Plane

Final Project

- Feel free to pick any vision related topic but discuss with me first
- Email choice to me by Tuesday, 11/18
 - Projects due Tuesday 12/16
- Suggested topics
 - Video insertion using affine motion estimation
 - Panoramic mosaics
 - Synthesis of novel views from stereo
 - Hausdorff based learning and matching
 - Flexible template matching
 - Stereo or motion using belief propagation

Fundamental and Essential Matrix

- Linear algebra formulation of the epipolar geometry
- Fundamental matrix, F, maps point x in I to corresponding epipolar line l' in I'
 l'=Fx
 - Determined for particular camera geometry
 - For stereo cameras only changes if cameras move with respect to one another
- Essential matrix, E, when camera calibration (intrinsic parameters) known

Fundamental Matrix

Epipolar constraint

 $\mathbf{x'^T}\mathbf{F}\mathbf{x} = \mathbf{x'^T}\ell = 0$

- Thus from enough corresponding pairs of points in the two images can solve for F
 - However not as simple as least squares minimization because F not fully general matrix
- Consider form of F in more detail

$$\begin{array}{ccc} \mathsf{L} & \mathsf{A} \\ \mathsf{X} & \to & \ell & \to \ell' \end{array}$$

epipolar line for x

´X ?

X ?.

Α

Form of Fundamental Matrix

• L:
$$X \to \ell$$

– Epipolar line ℓ goes through x and epipole e

– Epipole determines L

l = Lx (rewriting cross product)

- If e=(u,v,w)

$$L = \begin{bmatrix} 0 & w & -v \\ -w & 0 & u \\ v & -u & 0 \end{bmatrix}$$

 $\ell = \mathbf{X} \times \mathbf{e}$

- L is rank 2 and has 2 d.o.f.

Form of Fundamental Matrix

- A: $\ell \to \ell'$
 - Constrained by 3 pairs of epipolar lines

$$\ell'_{i} = A \ell_{i}$$

- Note only 5 d.o.f.
 - First two line correspondences each provide two constraints
 - Third provides only one constraint as lines must go through intersection of first two
- F=AL rank 2 matrix with 7 d.o.f.
 - As opposed to 8 d.o.f. in 3x3 homogeneous system

Properties of F

- Unique 3x3 rank 2 matrix satisfying x^{'T}Fx=0 for all pairs x,x'
 - Constrained minimization techniques can be used to solve for F given point pairs
- F has 7 d.o.f.
 - 3x3 homogeneous (9-1=8), rank 2 (8-1=7)
- Epipolar lines $\ell' = Fx$ and reverse map $\ell = F^Tx'$
 - Because also $(Fx)^Tx'=0$ but then $x^T(F^Tx')=0$
- Epipoles e[/]TF=0 and Fe=0

- Because $e'^{T}\ell'=0$ for any ℓ' ; Le=0 by construction

Stereo (Epipolar) Rectification

- Given F, simplify stereo matching problem by warping images
 - Common image plane for two cameras
 - Epipolar lines parallel to x-axis
 - Epipole at (1,0,0)
 - Corresponding scan lines of two images

- Intel vision library: calibration and rectification

Planar Rectification

- Move epipoles to infinity
 - Poor when epipoles near image

Stereo Matching

- Seek corresponding pixels in I, I'
 Only along epipolar lines
- Rectified imaging geometry so just horizontal disparity D at each pixel I'(x',y')=I(x+D(x,y),y)
- Best methods minimize energy based on matching (data) and discontinuity costs

Plane Homography

- Projective transformation mapping points in one plane to points in another
- In homogeneous coordinates

$$\begin{pmatrix} aX+bY+cW \\ dX+eY+fW \\ gX+hY+iW \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

- Maps four (coplanar) points to any four
 - Quadrilateral to quadrilateral
 - Does not preserve parallelism

Contrast with Affine

Can represent in Euclidean plane x'=Lx+t

- Arbitrary 2x2 matrix L and 2-vector t
- In homogeneous coordinates

$$\begin{pmatrix} aX+bY+cW \\ dX+eY+fW \\ W \end{pmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & i \end{bmatrix} \begin{pmatrix} X \\ Y \\ W \end{pmatrix}$$

- Maps three points to any three
 - Maps triangles to triangles
 - Preserves parallelism

Homography Example

- Changing viewpoint of single view
 - Correspondences in observed and desired views
 - E.g., from 45 degree to frontal view
 - Quadrilaterals to rectangles
 - Variable resolution and non-planar artifacts

Homography and Epipolar Geometry

 Plane in space π induces homography H between image planes

 $x'=H_{\pi}x$ for point X on π , x on I, x' on I'

Obeys Epipolar Geometry

- Given F, H_{π} no search for x' (points on π) x'^TFx=0, x^TH_{π}^TFx=0
- Maps epipoles, e'= H_πe

Computing Homography

- Correspondences of four points that are coplanar in world (no need for F)
 - Substantial error if not coplanar
- Fundamental matrix F and 3 point correspondences
 - Can think of pair e,e' as providing fourth correspondence
- Fundamental matrix plus point and line correspondences
- Improvements
 - More correspondences and least squares
 - Correspondences farther apart

Plane Induced Parallax

- Determine homography of a plane
 - Remaining differences reflect depth from plane

Plane + Parallax Correspondences

Projective Depth

- Distance between $H_{\pi}x$ and x' (along I') proportional to distance of X from plane π
 - Sign governs which side of plane

Multiple Cameras

- Similarly extensive geometry for three cameras
 - Known as tri-focal tensor
 - Beyond scope of this course

- Three lines
- Three points
- Line and 2 points
- Point and 2 lines

