
CS 664 Slides #8
Regularization and MRF’s

Prof. Dan Huttenlocher
Fall 2003



2

Regularization in Low Level Vision

Low level vision problems concerned with 
estimating some quantity at each pixel
– Visual motion (u(x,y),v(x,y))
– Stereo disparity d(x,y)
– Restoration of true intensity b(x,y)

Problem under constrained
– Only able to observe noisy values at each pixel
– Sometimes single pixel not enough to estimate 

value

Need to apply other constraints



3

Smooth but with discontinuities



4

Small discontinuities important 



5

Smoothness Constraints

Estimated values should change slowly as 
function of (x,y)
– Except “boundaries” which are relatively rare

Minimize an error function
E(r(x,y)) = V(r(x,y)) + λ DI(r(x,y))

– For r being estimated at each x,y location
– V penalizes change in r in local neighborhood
– DI penalizes r disagreeing with image data
– λ controls tradeoff of these smoothness and 

data terms
• Can itself be parameterized by x,y



6

Regularization for Visual Motion

Use quadratic error function
Smoothness term

V (u(x,y),v(x,y)) = ∑ ∑ ux
2 + uy

2 + vx
2 + vy

2

– Where subscripts denote partials
ux=∂u(x,y)/∂x, etc.

Data term
DI(u(x,y),v(x,y)) = ∑ ∑ (Ix·u + Iy·v + It)2

Only for smoothly changing motion fields
– No discontinuity boundaries
– Does not work well in practice



7

Problems With Regularization

Computational difficulty
– Extremely high dimensional minimization 

problem
• 2mn dimensional space for m×n image and 

motion estimation
• If k motion values, d2mn possible solutions
• Can solve with gradient descent methods

Smoothness too strong a model 
– Can in principle estimate variable smoothness 

penalty λI(x,y)
• More difficult computation
• Need to relate λI to V, DI



8

Regularization With 
Discontinuities

Line process
– Estimate binary value representing when 

discontinuity between neighboring pixels

Pixels as sites s∈S (vertices in graph)
– Neighborhood Ns sites connected to s by edges

• Grid graph 4-connected or 8-connected

– Write smoothness term analogously as
∑s∈S ∑n∈Ns (us-un)2 + (vs-vn)2

s

n



9

Line Process

Variable smoothness penalty depending 
on binary estimate of discontinuity ls,n

∑s∈S ∑n∈Ns [αs(1-ls,n)((us-un)2 + (vs-vn)2)
+ βsls,n]

– With αs, βs constants controlling smoothness

Minimization problem no longer as simple
– Graduated non-convexity (GNC)

s

n
Line process ls,n



10

Robust Regularization

Both smoothness and data constraints can 
be violated
– Result not smooth at certain locations

• Addressed by line process

– Data values bad at certain locations
• E.g., specularities, occlusions
• Not addressed by line process

Unified view: model both smoothness and 
data terms using robust error measures
– Replace quadratic error which is sensitive to 

outliers



11

Robust Formulation

Simply replace quadratic terms with 
robust error function ρ

∑s∈S [ρ1(Ix·us + Iy·vs + It) 
+ λ ∑n∈Ns [ρ2(us-un) + ρ2(vs-vn)]]

– In practice often estimate first term over small 
region around s

Some robust error functions
– Truncated linear: ρτ(x) = min(τ,x)
– Truncated quadratic: ρτ(x) = min(τ,x2)
– Lorentzian: ρσ(x) = log(1 + ½(x/σ)2)



12

Influence Functions

Useful to think of error functions in terms 
of degree to which a given value affects 
the result



13

Relation to Line Process

Can think of robust error function as 
performing “outlier rejection”
– Influence (near) zero for outliers but non-zero 

for inliers

Line process makes a binary inlier/outlier 
decision
– Based on external process or on degree of 

difference between estimated values

Both robust estimation and line process 
formulations local characterizations



14

Relationship to MRF Models

Markov random field (MRF)
– Collection of random variables
– Graph structure models spatial relations with 

local neighborhoods (Markov property)
• Explicit dependencies among pixels

Widely used in low-level vision problems
– Stereo, motion, segmentation

Seek best label for each pixel
– Bayesian model, e.g., MAP estimation

Common to consider corresponding 
energy minimization problems



15

Markov Random Fields in Vision

Graph G=(V,E)
– Assume vertices indexed 1, …, n
– Observable variables y={y1, …, yn}
– Unobservable variables x={x1, …, xn}
– Edges connect each xi to certain neighbors Nxi

– Edges connect each xi to yi

– Consider cliques of size 2
• Recall clique is fully 

connected sub-graph
• 4-connected grid or 

2-connected chain



16

MRF Models in Vision

Prior P(x) factors into product of functions 
over cliques
– Due to Hammersly-Clifford Theorem

P(x) = ∏C ΨC(xc)
• ΨC termed clique potential, of form exp(-VC)

– For clique size 2 (cliques correspond to edges)
P(x) = ∏i,j Ψij(xi,xj)

Probability of hidden and observed values
P(x,y) = ∏i,j Ψij(xi,xj) ∏i Ψii(xi,yi)

– Given particular clique energy Vij and observed 
y, seek values of x maximizing P(x,y) 



17

Markov Property

Neighborhoods completely characterize 
conditional distributions
– Solving a global problem with local 

relationships

Probability of values over subset S given 
remainder same as for that subset given 
its neighborhood
– Given S⊂V and Sc=V-S

P(xS | xSc) = P (xS | Nxs)

Conceptually and computationally useful



18

MRF Estimation

Various ways of maximizing probability
– Common to use MAP estimate argmaxx P(x|y)

argmaxx ∏i,j Ψij(xi,xj) ∏i Φi(xi,yi)

Probabilities hard to compute with 
– Use logs (or often negative log)

argminx ∑i,j Vij(xi,xj) + ∑i Di(xi,yi)

In energy function formulation often think 
of assigning best label fi∈L to each node vi 

given data yi
argminf [∑i D(yi,fi) + ∑i,j V(fi,fj)]



19

Almost Same as Regularization

Summation of data and smoothness terms
argminf [∑i D(yi,fi) + ∑i,jV(fi,fj)]

argminf ∑s∈S [ρ1(ds,fs)+ λ ∑n∈Ns [ρ2(fs-fn)]]

– Data term D vs. robust data function ρ1

– Clique term V vs. robust smoothness function ρ2

• Over cliques rather than neighbors of each site

• Nearly same definitions on four connected grid

Probabilistic formulation particularly helpful 
for learning problems
– Parameters of D, V or even form of D,V



20

Common Clique Energies

Enforce “smoothness”, robust to outliers
– Potts model 

• Same or outlier (based on label identity)

Vτ(fi,fj) = 0 when fi=fj, τ otherwise

– Truncated linear model
• Small linear change or outlier (label difference)

Vσ,τ(fi,fj) = min(τ, σ|fi-fj|)

– Truncated quadratic model
• Small quadratic change or outlier (label 

difference)

Vσ,τ(fi,fj) = min(τ, σ|fi-fj|2)



21

1D Graphs (Chains)

Simpler than 2D for illustration purposes
Fast polynomial time algorithms
Problem definition
– Sequence of nodes V=(1, …, n)
– Edges between adjacent pairs (i, i+1)
– Observed value yi at each node
– Seek labeling f=(f1, …, fn), fi∈L, minimizing

∑i [D(yi,fi) + V(fi,fi+1)]    (note V(fn,fn+1)=0)

Contrast with smoothing by convolution 
di 1  3   2   1   3  12  10 11 10 12

fi 2  2   2   2   2  11  11 11 11 11



22

Viterbi Recurrence

Don’t need explicit min over f=(f1, …, fn)
– Instead recursively compute 

si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + V(fi-1,fi))

– Note si(fi) for given i encodes a lowest cost label 
sequence ending in state fi at that node

V(fi-1,fi)

Possible labels,
values of fi

si(fi)Si-1(fi-1) D(yi,fi)



23

Viterbi Algorithm

Find a lowest cost assignment f1, …, fn
Initialize

s1(f1) = D(y1,f1)+π, with π cost of f1 if not uniform

Recurse
si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + V(fi-1,fi))
bi(fi) = argminfi-1 (si-1(fi-1) + V(fi-1,fi))

Terminate
minfn sn(fn) , cost of cheapest path (neg log prob)
fn*= argminfn sn(fn)

Backtrack
fn-1

*= bn(fn)



24

Viterbi Algorithm

For sequence of n data elements, with m 
possible labels per element
– Compute si(fi) for each element using 

recurrence
• O(nm2) time

– For final node compute fn minimizing sn(fn)
– Trace back from node back to first node

• Minimizers computed when computing costs on 
“forward” pass

First step dominates running time
Avoid searching exponentially many paths



25

Large Label Sets Problematic

Viterbi slow with large number of labels 
– O(m2) term in calculating si(fi)

For our problems V usually has a special 
form so can compute in linear time
– Consider linear clique energy

si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + |fi-1-fi|)

– Minimization term is precisely the distance 
transform DTsi-1 of a function considered earlier
• Which can compute in linear time

– But linear model not robust
• Can extend to truncated linear



26

Truncated Distance Cost

Avoid explicit minfi-1 for each fi
– Truncated linear model

minfi-1 (si-1(fi-1) + min(τ,|fi-1-fi|))
– Factor fi out of minimizations over fi-1

min(minfi-1(si-1(fi-1)+τ), 
minfi-1(si-1(fi-1)+|fi-1-fi|))

min(minfi-1(si-1(fi-1)+τ), DTsi-1(fi))

Analogous for truncated quadratic model
Similar for Potts model except no need for 
distance transform
O(mn) algorithm for best label sequence



27

Belief Propagation

Local message passing scheme in graph
– Every node in parallel computes messages to 

send to neighbors
• Iterate time-steps, t, until convergence

Various message updating schemes
– Here consider max product for undirected 

graph
• Becomes min sum using costs (neg log probs)

– Message mi,j,t sent from node i to j at time t

mi,j,t(fj) = minfi [V(fi,fj)+D(yi,fi)

+ ∑k∈Ni\j mk,i,t-1(fi)]



28

Belief Propagation

After message passing “converges” at 
iteration T
– Each node computes final value based on 

neighbors
bi(fi)=D(yi,fi)+∑k∈Nimr,i,T(fi)

– Select label fi minimizing bi for each node
• Corresponds to maximizing belief (probability)

For singly-connected chain node generally 
has two neighbors i-1 and i+1

mi,i-1,t(fi-1) = minfi [V(fi,fi-1)+D(yi,fi)+mi+1,i,t-1(fi)]

– Analogous for i+1 neighbor



29

Belief Propagation on a Chain

Message passed from i to i+1
mi,i+1,t(fi+1) = minfi [V(fi,fi+1)+D(yi,fi)+mi-1,i,t-1(fi)]

Note relation to Viterbi recursion
Can show BP converges to same minimum 
as Viterbi for chain (if unique min) 

mi-1,i,t-1(fi)

V(fi,fi+1)

Possible labels,
values of fi

mi,i+1,t-1(fi+1)D(yi,fi)



30

Min Sum Belief Prop Algorithm

For chain, two messages per node
– Node i sends messages mi,l to left mi,r to right
– Initialize: mi,l,0=mi,r,0=(0, …, 0) for all nodes i
– Update messages, for t from 1 to T

mi,l,t(fl) = minfi [V(fi,fl)+D(yi,fi)+mr,i,t-1(fi)]
mi,r,t(fr) = minfi [V(fi,fr)+D(yi,fi)+ml,i,t-1(fi)]

– Compute belief at each node
bi(fi)=D(yi,fi)+mr,i,T(fi)+ml,i,T(fi)

– Select best at each node
argminfi bi(fi)

For chain, global min of ∑i[D(yi,fi)+V(fi,fi+1)] 



31

Relation to HMM

Hidden Markov model
– Set of unobservable (hidden) states
– Sequence of observed values, yi

– Transitions between states are Markov
• Depend only on previous state (or fixed number)
• State transition matrix (costs or probabilities)

– Distribution of possible observed values for 
each state 

– Given yi determine best state sequence

Widely used in speech recognition and 
temporal modeling



32

Hidden Markov Models

Two different but equivalent views
– Sequence of unobservable random variables and 

observable values
• 1D MRF with label set 
• Penalties V(fi,fj), data costs D(yi,fi) 

– Hidden non-deterministic state machine
• Distribution over observable values for each state 

A BA

B

C

D E

V D



33

Using HMM’s

Three classical problems for HMM
– Given observation sequence Y=y1, …, yn and 

HMM λ=(D,V,π)
1. Compute P(Y|λ), probability of observing Y 

given the model
– Alternatively cost (negative log prob)

2. Determine the best state sequence x1, …, xn
given Y
– Various definitions of best, one is MAP estimate 

argmaxX P(X|Y,λ) or min cost

3. Adjust model λ=(D,V,π) to maximize P(Y|λ)
– Learning problem often solved by EM 



34

HMM Inference or Decoding

Determine the best state sequence X 
given observation sequence Y
– MAP (maximum a posteriori) estimate

argmaxX P(X|Y,λ)
• Equivalently minimize cost, negative log prob
• Computed using Viterbi or max-product (min-

sum) belief propagation

– Most likely state at each time P(Xt|Y1,…,Yt,λ)
• Maximize probability of states individually
• Computed using forward-backward procedure or 

sum-product belief propagation 



35

1D HMM Example

Estimate bias of “changing coin” from 
sequence of observed {H,T} values
– Use MAP formulation

• Find lowest cost state sequence

States correspond to possible bias values, 
e.g., .10, …, .90 (large state space)
– Data costs –logP(H|xi), -logP(T|xi)

Used to analyze time varying popularity of 
item downloads at Internet Archive
– Each visit results in download or not (H/T)



36

1D HMM Example

Truncated linear penalty term V(fi,fj)
– Contrast with smoothing
– Particularly hard task for 0-1 valued data



37

Algorithms for Grids (2D)

Polynomial time for binary label set or for 
convex cost function V(fi,fj)
– Compute minimum cut in certain graph
– NP hard in general (reduction from multi-way cut)

Approximation methods (not global min)
– Graph cuts and “expansion moves”
– Loopy belief propagation
– Many other local minimization techniques

• Monte Carlo sampling methods, annealing, etc.
– Consider graph cuts and belief propagation

• Reasonably fast
• Can characterize the local minimum



38

Evaluating 2D Energy Min Methods 

Benchmark for stereo data
– Estimate a disparity d at each pixel

• Inversely proportional to depth, closer things 
move farther (larger disparity between images)

• Data term D(yi,fi)=(I(yi,u,yi,v)-I(yi,u+fi,yi,v))2

– Rectified images so disparities are horizontal (u)
– Ground truth and error measure

Stereo



39

Loopy Belief Propagation

Apply belief propagation to graph with 
loops such as MRF
– No longer globally optimal result
– Results suggesting good local minimum in 

sense that no better minima “nearby”

In practice works quite well
– Some of best stereo results obtained using LBP
– Relatively slow – minutes per image

• Number of iterations proportional to image 
diameter – propagate messages across grid

– Alternative approaches such as removing loops



40

Loopy Belief Prop on Grid

Min sum algorithm, analogous to chain
– Four message types (dirs) mi,l, mi,r, mi,u, mi,d

– Initialize, mi,l,0=mi,r,0= mi,u,0= mi,d,0=(0, …, 0)
– Update messages, for t from 1 to T,

mi,l,t(fl) = minfi [V(fi,fl)+D(yi,fi)+mr,i,t-1(fi)
+ mu,i,t-1(fi)+ md,i,t-1(fi)]

• Analogous for other three directions r,u,d

– Compute beliefs,
bi(fi)=D(yi,fi)+mr,i,T(fi)+ml,i.,T(fi)

+mu,i,T(fi)+ md,i,T(fi)
– Select best, argminfi bi(fi)



41

Loopy Belief Prop Schematic

At time step t can think of each node 
– Using “incoming” messages from time t-1
– Creating new “outgoing” messages 

Store 8 messages per node
– Four directions at t-1 for others to use
– Four directions at t for i to compute
– Each message a cost for each label (distribution)

mu,i,t-1

ml,i,t-1mr,i,t-1

Compute mi,d,t



42

Graph Cuts

Two label problem can be solved using 
minimum cut in suitably defined graph
For many labels use expansion move 
heuristic
– Re-cast problem of finding labeling as 

sequence of binary problems
– Given a labeling, seek best labeling that 

“expands” particular label α
• Binary because just consider change to α and 

leave alone as options

– Iterate repeatedly over labels



43

Expansion Moves

Input labeling f

Red expansion 
move from f

– Find red expansion move that most decreases energy
• Move there, then find the best blue expansion move, 

etc
• Done when no α-expansion move decreases the 

energy, for any label α
• Rapidly computes a strong local minimum

– Nice theoretical properties



44

Expansion Move Algorithm

The overall problem involves k labels, but 
the key sub-problem involves only 2
– Minimize energy over all O(2n) labelings within a 

single α-expansion move from f
– Each pixel p either keeps its old label fp, or 

acquire the new label α
– In practice few iterations over labels

Approach: classical problem reduction
– Reduction to computing the minimum cost s-t 

cut on the appropriate graph
• Fast polynomial time algorithm



45

Graph Cuts for Expansion Moves

Consider directed graph with non-negative 
edge weights and with two terminal nodes
– Source (node 0) and sink (node 1)

A cut is a partition of the nodes into two 
sets S,T such that 0∈S, 1∈T
– Or, a set of edges that separate the terminals
– Binary labeling of the non-terminal nodes!

The cost of the cut is the sum of the 
weights of edges from S to T
– There are fast ways to find the cut with the 

minimum cost, even on very large graphs



46

Graph Cut Illustration

1

Bvp

DC

A

vq

0

vr

E

GF
}1;1;0{labeling

},,1{

},0{

←←←=

=

=

rqp

rq

p

vvv

vvT

vS

EDBA +++=cost



47

Graph Cut Example

Graph Cut Results            Ground Truth Results               


	CS 664 Slides #8Regularization and MRF’s
	Regularization in Low Level Vision
	Smoothness Constraints
	Regularization for Visual Motion
	Problems With Regularization
	Regularization With Discontinuities
	Line Process
	Robust Regularization
	Robust Formulation
	Influence Functions
	Relation to Line Process
	Relationship to MRF Models
	Markov Random Fields in Vision
	MRF Models in Vision
	Markov Property
	MRF Estimation
	Almost Same as Regularization
	Common Clique Energies
	1D Graphs (Chains)
	Viterbi Recurrence
	Viterbi Algorithm
	Viterbi Algorithm
	Large Label Sets Problematic
	Truncated Distance Cost
	Belief Propagation
	Belief Propagation
	Belief Propagation on a Chain
	Min Sum Belief Prop Algorithm
	Relation to HMM
	Hidden Markov Models
	Using HMM’s
	HMM Inference or Decoding
	1D HMM Example
	1D HMM Example
	Algorithms for Grids (2D)
	Evaluating 2D Energy Min Methods
	Loopy Belief Propagation
	Loopy Belief Prop on Grid
	Loopy Belief Prop Schematic
	Graph Cuts
	Expansion Moves
	Expansion Move Algorithm
	Graph Cuts for Expansion Moves
	Graph Cut Illustration
	Graph Cut Example

