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Regularization in Low Level Vision

Low level vision problems concerned with 
estimating some quantity at each pixel
– Visual motion (u(x,y),v(x,y))
– Stereo disparity d(x,y)
– Restoration of true intensity b(x,y)

Problem under constrained
– Only able to observe noisy values at each pixel
– Sometimes single pixel not enough to estimate 

value

Need to apply other constraints
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Smooth but with discontinuities
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Small discontinuities important 
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Smoothness Constraints

Estimated values should change slowly as 
function of (x,y)
– Except “boundaries” which are relatively rare

Minimize an error function
E(r(x,y)) = V(r(x,y)) + λ DI(r(x,y))

– For r being estimated at each x,y location
– V penalizes change in r in local neighborhood
– DI penalizes r disagreeing with image data
– λ controls tradeoff of these smoothness and 

data terms
• Can itself be parameterized by x,y
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Regularization for Visual Motion

Use quadratic error function
Smoothness term

V (u(x,y),v(x,y)) = ∑ ∑ ux
2 + uy

2 + vx
2 + vy

2

– Where subscripts denote partials
ux=∂u(x,y)/∂x, etc.

Data term
DI(u(x,y),v(x,y)) = ∑ ∑ (Ix·u + Iy·v + It)2

Only for smoothly changing motion fields
– No discontinuity boundaries
– Does not work well in practice
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Problems With Regularization

Computational difficulty
– Extremely high dimensional minimization 

problem
• 2mn dimensional space for m×n image and 

motion estimation
• If k motion values, d2mn possible solutions
• Can solve with gradient descent methods

Smoothness too strong a model 
– Can in principle estimate variable smoothness 

penalty λI(x,y)
• More difficult computation
• Need to relate λI to V, DI
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Regularization With 
Discontinuities

Line process
– Estimate binary value representing when 

discontinuity between neighboring pixels

Pixels as sites s∈S (vertices in graph)
– Neighborhood Ns sites connected to s by edges

• Grid graph 4-connected or 8-connected

– Write smoothness term analogously as
∑s∈S ∑n∈Ns (us-un)2 + (vs-vn)2

s

n
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Line Process

Variable smoothness penalty depending 
on binary estimate of discontinuity ls,n

∑s∈S ∑n∈Ns [αs(1-ls,n)((us-un)2 + (vs-vn)2)
+ βsls,n]

– With αs, βs constants controlling smoothness

Minimization problem no longer as simple
– Graduated non-convexity (GNC)

s

n
Line process ls,n
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Robust Regularization

Both smoothness and data constraints can 
be violated
– Result not smooth at certain locations

• Addressed by line process

– Data values bad at certain locations
• E.g., specularities, occlusions
• Not addressed by line process

Unified view: model both smoothness and 
data terms using robust error measures
– Replace quadratic error which is sensitive to 

outliers
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Robust Formulation

Simply replace quadratic terms with 
robust error function ρ

∑s∈S [ρ1(Ix·us + Iy·vs + It) 
+ λ ∑n∈Ns [ρ2(us-un) + ρ2(vs-vn)]]

– In practice often estimate first term over small 
region around s

Some robust error functions
– Truncated linear: ρτ(x) = min(τ,x)
– Truncated quadratic: ρτ(x) = min(τ,x2)
– Lorentzian: ρσ(x) = log(1 + ½(x/σ)2)
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Influence Functions

Useful to think of error functions in terms 
of degree to which a given value affects 
the result



13

Relation to Line Process

Can think of robust error function as 
performing “outlier rejection”
– Influence (near) zero for outliers but non-zero 

for inliers

Line process makes a binary inlier/outlier 
decision
– Based on external process or on degree of 

difference between estimated values

Both robust estimation and line process 
formulations local characterizations
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Relationship to MRF Models

Markov random field (MRF)
– Collection of random variables
– Graph structure models spatial relations with 

local neighborhoods (Markov property)
• Explicit dependencies among pixels

Widely used in low-level vision problems
– Stereo, motion, segmentation

Seek best label for each pixel
– Bayesian model, e.g., MAP estimation

Common to consider corresponding 
energy minimization problems
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Markov Random Fields in Vision

Graph G=(V,E)
– Assume vertices indexed 1, …, n
– Observable variables y={y1, …, yn}
– Unobservable variables x={x1, …, xn}
– Edges connect each xi to certain neighbors Nxi

– Edges connect each xi to yi

– Consider cliques of size 2
• Recall clique is fully 

connected sub-graph
• 4-connected grid or 

2-connected chain
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MRF Models in Vision

Prior P(x) factors into product of functions 
over cliques
– Due to Hammersly-Clifford Theorem

P(x) = ∏C ΨC(xc)
• ΨC termed clique potential, of form exp(-VC)

– For clique size 2 (cliques correspond to edges)
P(x) = ∏i,j Ψij(xi,xj)

Probability of hidden and observed values
P(x,y) = ∏i,j Ψij(xi,xj) ∏i Ψii(xi,yi)

– Given particular clique energy Vij and observed 
y, seek values of x maximizing P(x,y) 
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Markov Property

Neighborhoods completely characterize 
conditional distributions
– Solving a global problem with local 

relationships

Probability of values over subset S given 
remainder same as for that subset given 
its neighborhood
– Given S⊂V and Sc=V-S

P(xS | xSc) = P (xS | Nxs)

Conceptually and computationally useful
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MRF Estimation

Various ways of maximizing probability
– Common to use MAP estimate argmaxx P(x|y)

argmaxx ∏i,j Ψij(xi,xj) ∏i Φi(xi,yi)

Probabilities hard to compute with 
– Use logs (or often negative log)

argminx ∑i,j Vij(xi,xj) + ∑i Di(xi,yi)

In energy function formulation often think 
of assigning best label fi∈L to each node vi 

given data yi
argminf [∑i D(yi,fi) + ∑i,j V(fi,fj)]
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Almost Same as Regularization

Summation of data and smoothness terms
argminf [∑i D(yi,fi) + ∑i,jV(fi,fj)]

argminf ∑s∈S [ρ1(ds,fs)+ λ ∑n∈Ns [ρ2(fs-fn)]]

– Data term D vs. robust data function ρ1

– Clique term V vs. robust smoothness function ρ2

• Over cliques rather than neighbors of each site

• Nearly same definitions on four connected grid

Probabilistic formulation particularly helpful 
for learning problems
– Parameters of D, V or even form of D,V
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Common Clique Energies

Enforce “smoothness”, robust to outliers
– Potts model 

• Same or outlier (based on label identity)

Vτ(fi,fj) = 0 when fi=fj, τ otherwise

– Truncated linear model
• Small linear change or outlier (label difference)

Vσ,τ(fi,fj) = min(τ, σ|fi-fj|)

– Truncated quadratic model
• Small quadratic change or outlier (label 

difference)

Vσ,τ(fi,fj) = min(τ, σ|fi-fj|2)
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1D Graphs (Chains)

Simpler than 2D for illustration purposes
Fast polynomial time algorithms
Problem definition
– Sequence of nodes V=(1, …, n)
– Edges between adjacent pairs (i, i+1)
– Observed value yi at each node
– Seek labeling f=(f1, …, fn), fi∈L, minimizing

∑i [D(yi,fi) + V(fi,fi+1)]    (note V(fn,fn+1)=0)

Contrast with smoothing by convolution 
di 1  3   2   1   3  12  10 11 10 12

fi 2  2   2   2   2  11  11 11 11 11
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Viterbi Recurrence

Don’t need explicit min over f=(f1, …, fn)
– Instead recursively compute 

si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + V(fi-1,fi))

– Note si(fi) for given i encodes a lowest cost label 
sequence ending in state fi at that node

V(fi-1,fi)

Possible labels,
values of fi

si(fi)Si-1(fi-1) D(yi,fi)
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Viterbi Algorithm

Find a lowest cost assignment f1, …, fn
Initialize

s1(f1) = D(y1,f1)+π, with π cost of f1 if not uniform

Recurse
si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + V(fi-1,fi))
bi(fi) = argminfi-1 (si-1(fi-1) + V(fi-1,fi))

Terminate
minfn sn(fn) , cost of cheapest path (neg log prob)
fn*= argminfn sn(fn)

Backtrack
fn-1

*= bn(fn)
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Viterbi Algorithm

For sequence of n data elements, with m 
possible labels per element
– Compute si(fi) for each element using 

recurrence
• O(nm2) time

– For final node compute fn minimizing sn(fn)
– Trace back from node back to first node

• Minimizers computed when computing costs on 
“forward” pass

First step dominates running time
Avoid searching exponentially many paths



25

Large Label Sets Problematic

Viterbi slow with large number of labels 
– O(m2) term in calculating si(fi)

For our problems V usually has a special 
form so can compute in linear time
– Consider linear clique energy

si(fi) = D(yi,fi) + minfi-1 (si-1(fi-1) + |fi-1-fi|)

– Minimization term is precisely the distance 
transform DTsi-1 of a function considered earlier
• Which can compute in linear time

– But linear model not robust
• Can extend to truncated linear
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Truncated Distance Cost

Avoid explicit minfi-1 for each fi
– Truncated linear model

minfi-1 (si-1(fi-1) + min(τ,|fi-1-fi|))
– Factor fi out of minimizations over fi-1

min(minfi-1(si-1(fi-1)+τ), 
minfi-1(si-1(fi-1)+|fi-1-fi|))

min(minfi-1(si-1(fi-1)+τ), DTsi-1(fi))

Analogous for truncated quadratic model
Similar for Potts model except no need for 
distance transform
O(mn) algorithm for best label sequence
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Belief Propagation

Local message passing scheme in graph
– Every node in parallel computes messages to 

send to neighbors
• Iterate time-steps, t, until convergence

Various message updating schemes
– Here consider max product for undirected 

graph
• Becomes min sum using costs (neg log probs)

– Message mi,j,t sent from node i to j at time t

mi,j,t(fj) = minfi [V(fi,fj)+D(yi,fi)

+ ∑k∈Ni\j mk,i,t-1(fi)]
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Belief Propagation

After message passing “converges” at 
iteration T
– Each node computes final value based on 

neighbors
bi(fi)=D(yi,fi)+∑k∈Nimr,i,T(fi)

– Select label fi minimizing bi for each node
• Corresponds to maximizing belief (probability)

For singly-connected chain node generally 
has two neighbors i-1 and i+1

mi,i-1,t(fi-1) = minfi [V(fi,fi-1)+D(yi,fi)+mi+1,i,t-1(fi)]

– Analogous for i+1 neighbor
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Belief Propagation on a Chain

Message passed from i to i+1
mi,i+1,t(fi+1) = minfi [V(fi,fi+1)+D(yi,fi)+mi-1,i,t-1(fi)]

Note relation to Viterbi recursion
Can show BP converges to same minimum 
as Viterbi for chain (if unique min) 

mi-1,i,t-1(fi)

V(fi,fi+1)

Possible labels,
values of fi

mi,i+1,t-1(fi+1)D(yi,fi)
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Min Sum Belief Prop Algorithm

For chain, two messages per node
– Node i sends messages mi,l to left mi,r to right
– Initialize: mi,l,0=mi,r,0=(0, …, 0) for all nodes i
– Update messages, for t from 1 to T

mi,l,t(fl) = minfi [V(fi,fl)+D(yi,fi)+mr,i,t-1(fi)]
mi,r,t(fr) = minfi [V(fi,fr)+D(yi,fi)+ml,i,t-1(fi)]

– Compute belief at each node
bi(fi)=D(yi,fi)+mr,i,T(fi)+ml,i,T(fi)

– Select best at each node
argminfi bi(fi)

For chain, global min of ∑i[D(yi,fi)+V(fi,fi+1)] 
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Relation to HMM

Hidden Markov model
– Set of unobservable (hidden) states
– Sequence of observed values, yi

– Transitions between states are Markov
• Depend only on previous state (or fixed number)
• State transition matrix (costs or probabilities)

– Distribution of possible observed values for 
each state 

– Given yi determine best state sequence

Widely used in speech recognition and 
temporal modeling
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Hidden Markov Models

Two different but equivalent views
– Sequence of unobservable random variables and 

observable values
• 1D MRF with label set 
• Penalties V(fi,fj), data costs D(yi,fi) 

– Hidden non-deterministic state machine
• Distribution over observable values for each state 

A BA

B

C

D E

V D
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Using HMM’s

Three classical problems for HMM
– Given observation sequence Y=y1, …, yn and 

HMM λ=(D,V,π)
1. Compute P(Y|λ), probability of observing Y 

given the model
– Alternatively cost (negative log prob)

2. Determine the best state sequence x1, …, xn
given Y
– Various definitions of best, one is MAP estimate 

argmaxX P(X|Y,λ) or min cost

3. Adjust model λ=(D,V,π) to maximize P(Y|λ)
– Learning problem often solved by EM 
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HMM Inference or Decoding

Determine the best state sequence X 
given observation sequence Y
– MAP (maximum a posteriori) estimate

argmaxX P(X|Y,λ)
• Equivalently minimize cost, negative log prob
• Computed using Viterbi or max-product (min-

sum) belief propagation

– Most likely state at each time P(Xt|Y1,…,Yt,λ)
• Maximize probability of states individually
• Computed using forward-backward procedure or 

sum-product belief propagation 
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1D HMM Example

Estimate bias of “changing coin” from 
sequence of observed {H,T} values
– Use MAP formulation

• Find lowest cost state sequence

States correspond to possible bias values, 
e.g., .10, …, .90 (large state space)
– Data costs –logP(H|xi), -logP(T|xi)

Used to analyze time varying popularity of 
item downloads at Internet Archive
– Each visit results in download or not (H/T)
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1D HMM Example

Truncated linear penalty term V(fi,fj)
– Contrast with smoothing
– Particularly hard task for 0-1 valued data



37

Algorithms for Grids (2D)

Polynomial time for binary label set or for 
convex cost function V(fi,fj)
– Compute minimum cut in certain graph
– NP hard in general (reduction from multi-way cut)

Approximation methods (not global min)
– Graph cuts and “expansion moves”
– Loopy belief propagation
– Many other local minimization techniques

• Monte Carlo sampling methods, annealing, etc.
– Consider graph cuts and belief propagation

• Reasonably fast
• Can characterize the local minimum
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Evaluating 2D Energy Min Methods 

Benchmark for stereo data
– Estimate a disparity d at each pixel

• Inversely proportional to depth, closer things 
move farther (larger disparity between images)

• Data term D(yi,fi)=(I(yi,u,yi,v)-I(yi,u+fi,yi,v))2

– Rectified images so disparities are horizontal (u)
– Ground truth and error measure

Stereo
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Loopy Belief Propagation

Apply belief propagation to graph with 
loops such as MRF
– No longer globally optimal result
– Results suggesting good local minimum in 

sense that no better minima “nearby”

In practice works quite well
– Some of best stereo results obtained using LBP
– Relatively slow – minutes per image

• Number of iterations proportional to image 
diameter – propagate messages across grid

– Alternative approaches such as removing loops
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Loopy Belief Prop on Grid

Min sum algorithm, analogous to chain
– Four message types (dirs) mi,l, mi,r, mi,u, mi,d

– Initialize, mi,l,0=mi,r,0= mi,u,0= mi,d,0=(0, …, 0)
– Update messages, for t from 1 to T,

mi,l,t(fl) = minfi [V(fi,fl)+D(yi,fi)+mr,i,t-1(fi)
+ mu,i,t-1(fi)+ md,i,t-1(fi)]

• Analogous for other three directions r,u,d

– Compute beliefs,
bi(fi)=D(yi,fi)+mr,i,T(fi)+ml,i.,T(fi)

+mu,i,T(fi)+ md,i,T(fi)
– Select best, argminfi bi(fi)
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Loopy Belief Prop Schematic

At time step t can think of each node 
– Using “incoming” messages from time t-1
– Creating new “outgoing” messages 

Store 8 messages per node
– Four directions at t-1 for others to use
– Four directions at t for i to compute
– Each message a cost for each label (distribution)

mu,i,t-1

ml,i,t-1mr,i,t-1

Compute mi,d,t
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Graph Cuts

Two label problem can be solved using 
minimum cut in suitably defined graph
For many labels use expansion move 
heuristic
– Re-cast problem of finding labeling as 

sequence of binary problems
– Given a labeling, seek best labeling that 

“expands” particular label α
• Binary because just consider change to α and 

leave alone as options

– Iterate repeatedly over labels
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Expansion Moves

Input labeling f

Red expansion 
move from f

– Find red expansion move that most decreases energy
• Move there, then find the best blue expansion move, 

etc
• Done when no α-expansion move decreases the 

energy, for any label α
• Rapidly computes a strong local minimum

– Nice theoretical properties
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Expansion Move Algorithm

The overall problem involves k labels, but 
the key sub-problem involves only 2
– Minimize energy over all O(2n) labelings within a 

single α-expansion move from f
– Each pixel p either keeps its old label fp, or 

acquire the new label α
– In practice few iterations over labels

Approach: classical problem reduction
– Reduction to computing the minimum cost s-t 

cut on the appropriate graph
• Fast polynomial time algorithm
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Graph Cuts for Expansion Moves

Consider directed graph with non-negative 
edge weights and with two terminal nodes
– Source (node 0) and sink (node 1)

A cut is a partition of the nodes into two 
sets S,T such that 0∈S, 1∈T
– Or, a set of edges that separate the terminals
– Binary labeling of the non-terminal nodes!

The cost of the cut is the sum of the 
weights of edges from S to T
– There are fast ways to find the cut with the 

minimum cost, even on very large graphs
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Graph Cut Illustration
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Graph Cut Example

Graph Cut Results            Ground Truth Results               
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