# CS 664 Slides \#8 Regularization and MRF's 

Prof. Dan Huttenlocher Fall 2003

## Regularization in Low Level Vision

- Low level vision problems concerned with estimating some quantity at each pixel
- Visual motion (u(x,y),v(x,y))
- Stereo disparity d(x,y)
- Restoration of true intensity $b(x, y)$
- Problem under constrained
- Only able to observe noisy values at each pixel
- Sometimes single pixel not enough to estimate value
- Need to apply other constraints


## Smooth but with discontinuities



First image


Second image

## Small discontinuities important



First image


Second image

## Smoothness Constraints

- Estimated values should change slowly as function of ( $x, y$ )
- Except "boundaries" which are relatively rare
- Minimize an error function

$$
E(r(x, y))=V(r(x, y))+\lambda D_{\mathbf{I}}(r(x, y))
$$

- For $r$ being estimated at each $x, y$ location
- V penalizes change in $r$ in local neighborhood
- $D_{\text {I }}$ penalizes $r$ disagreeing with image data
- $\lambda$ controls tradeoff of these smoothness and data terms
- Can itself be parameterized by $x, y$


## Regularization for Visual Motion

- Use quadratic error function
- Smoothness term

$$
v(u(x, y), v(x, y))=\sum \sum u_{x}{ }^{2}+u_{y}^{2}+v_{x}{ }^{2}+v_{y}{ }^{2}
$$

- Where subscripts denote partials $\mathrm{u}_{\mathrm{x}}=\partial \mathrm{u}(\mathrm{x}, \mathrm{y}) / \partial \mathrm{x}$, etc.
- Data term

$$
D_{I}(u(x, y), v(x, y))=\sum \sum\left(I_{x} \cdot u+I_{y} \cdot v+I_{t}\right)^{2}
$$

- Only for smoothly changing motion fields
- No discontinuity boundaries
- Does not work well in practice


## Problems With Regularization

- Computational difficulty
- Extremely high dimensional minimization problem
- $2 m n$ dimensional space for $m \times n$ image and motion estimation
- If $k$ motion values, $d^{2 m n}$ possible solutions
- Can solve with gradient descent methods
- Smoothness too strong a model
- Can in principle estimate variable smoothness penalty $\lambda_{\mathrm{I}}(\mathrm{x}, \mathrm{y})$
- More difficult computation
- Need to relate $\lambda_{I}$ to $V$, $D_{I}$


## Regularization With Discontinuities

- Line process
- Estimate binary value representing when discontinuity between neighboring pixels
- Pixels as sites $s \in S$ (vertices in graph)
- Neighborhood $\pi_{s}$ sites connected to s by edges
- Grid graph 4-connected or 8-connected
- Write smoothness term analogously as

$$
\sum_{s \in S} \sum_{n \in \eta s}\left(u_{s}-u_{n}\right)^{2}+\left(v_{s}-v_{n}\right)^{2}
$$



## Line Process

- Variable smoothness penalty depending on binary estimate of discontinuity $I_{s, n}$

$$
\begin{gathered}
\sum_{s \in s} \sum_{n \in Z s}\left[\alpha_{s}\left(1-I_{s, n}\right)\left(\left(u_{s}-u_{n}\right)^{2}+\left(v_{s}-v_{n}\right)^{2}\right)\right. \\
\left.+\left.\beta_{s}\right|_{s, n}\right]
\end{gathered}
$$

- With $\alpha_{s}, \beta_{\mathbf{s}}$ constants controlling smoothness
- Minimization problem no longer as simple
- Graduated non-convexity (GNC)



## Robust Regularization

- Both smoothness and data constraints can be violated
- Result not smooth at certain locations
- Addressed by line process
- Data values bad at certain locations
- E.g., specularities, occlusions
- Not addressed by line process
- Unified view: model both smoothness and data terms using robust error measures
- Replace quadratic error which is sensitive to outliers


## Robust Formulation

- Simply replace quadratic terms with robust error function $\rho$

$$
\begin{aligned}
\sum_{\mathbf{s} \in S} & {\left[\rho_{\mathbf{1}}\left(I_{\mathbf{x}} \cdot u_{\mathbf{s}}+I_{\mathbf{y}} \cdot v_{\mathbf{s}}+I_{\mathbf{t}}\right)\right.} \\
& \left.\quad+\lambda \sum_{\mathbf{n} \in \ell s}\left[\rho_{\mathbf{2}}\left(u_{\mathbf{s}}-u_{\mathbf{n}}\right)+\rho_{\mathbf{2}}\left(v_{\mathbf{s}}-v_{\mathbf{n}}\right)\right]\right]
\end{aligned}
$$

- In practice often estimate first term over small region around s
- Some robust error functions
- Truncated linear: $\rho_{\tau}(x)=\min (\tau, x)$
- Truncated quadratic: $\rho_{\tau}(x)=\min \left(\tau, x^{2}\right)$
- Lorentzian: $\rho_{\sigma}(x)=\log \left(1+1 / 2(x / \sigma)^{2}\right)$


## Influence Functions

- Useful to think of error functions in terms of degree to which a given value affects the result



## Relation to Line Process

- Can think of robust error function as performing "outlier rejection"
- Influence (near) zero for outliers but non-zero for inliers
- Line process makes a binary inlier/outlier decision
- Based on external process or on degree of difference between estimated values
- Both robust estimation and line process formulations local characterizations


## Relationship to MRF Models

- Markov random field (MRF)
- Collection of random variables
- Graph structure models spatial relations with local neighborhoods (Markov property)
- Explicit dependencies among pixels
- Widely used in low-level vision problems
- Stereo, motion, segmentation
- Seek best label for each pixel
- Bayesian model, e.g., MAP estimation
- Common to consider corresponding energy minimization problems


## Markov Random Fields in Vision

- Graph G=(V,E)
- Assume vertices indexed $1, \ldots, n$
- Observable variables $y=\left\{y_{1}, \ldots, y_{n}\right\}$
- Unobservable variables $x=\left\{x_{1}, \ldots, x_{n}\right\}$
- Edges connect each $x_{i}$ to certain neighbors $n_{\text {xi }}$
- Edges connect each $x_{i}$ to $y_{i}$
- Consider cliques of size 2
- Recall clique is fully connected sub-graph

- 4-connected grid or 2-connected chain



## MRF Models in Vision

- Prior $P(x)$ factors into product of functions over cliques
- Due to Hammersly-Clifford Theorem

$$
P(x)=\Pi_{c} \Psi_{c}\left(x_{c}\right)
$$

- $\Psi_{\mathbf{c}}$ termed clique potential, of form $\exp \left(-V_{\mathbf{c}}\right)$
- For clique size 2 (cliques correspond to edges)

$$
P(x)=\prod_{i, j} \Psi_{i j}\left(x_{i}, x_{j}\right)
$$

- Probability of hidden and observed values

$$
P(x, y)=\prod_{i, j} \Psi_{i j}\left(x_{i}, x_{j}\right) \Pi_{i} \Psi_{i i}\left(x_{i}, y_{i}\right)
$$

- Given particular clique energy $V_{i j}$ and observed $y$, seek values of $x$ maximizing $P(x, y)$


## Markov Property

- Neighborhoods completely characterize conditional distributions
- Solving a global problem with local relationships
- Probability of values over subset $S$ given remainder same as for that subset given its neighborhood
- Given $\mathrm{S} \subset \mathrm{V}$ and $\mathrm{S}^{\mathrm{c}}=\mathrm{V}$-S

$$
P\left(x_{\mathbf{s}} \mid x_{\mathbf{s c}}\right)=P\left(x_{\mathbf{s}} \mid n_{\mathbf{x}}\right)
$$

- Conceptually and computationally useful


## MRF Estimation

- Various ways of maximizing probability
- Common to use MAP estimate argmax ${ }_{\mathbf{x}} \mathrm{P}(\mathrm{x} \mid \mathrm{y})$ $\operatorname{argmax}_{\mathbf{x}} \Pi_{\mathrm{i}, \mathrm{j}} \Psi_{\mathrm{ij}}\left(\mathrm{x}_{\mathbf{i}}, \mathrm{x}_{\mathbf{j}}\right) \Pi_{\mathrm{i}} \Phi_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- Probabilities hard to compute with
- Use logs (or often negative log) $\operatorname{argmin}_{\mathbf{x}} \sum_{\mathbf{i}, \mathbf{j}} \mathrm{V}_{\mathbf{i j}}\left(\mathrm{x}_{\mathbf{i}}, \mathrm{x}_{\mathbf{j}}\right)+\sum_{\mathbf{i}} \mathrm{D}_{\mathbf{i}}\left(\mathrm{x}_{\mathbf{i}}, \mathrm{y}_{\mathbf{i}}\right)$
- In energy function formulation often think of assigning best label $f_{i} \in \mathfrak{L}$ to each node $v_{i}$ given data $y_{i}$
$\operatorname{argmin}_{\mathbf{f}}\left[\sum_{\mathbf{i}} \mathrm{D}\left(\mathrm{y}_{\mathbf{i}}, \mathrm{f}_{\mathbf{i}}\right)+\sum_{\mathrm{i}, \mathbf{j}} \mathrm{V}\left(\mathrm{f}_{\mathbf{i},} \mathrm{f}_{\mathbf{j}}\right)\right]$


## Almost Same as Regularization

- Summation of data and smoothness terms $\operatorname{argmin}_{f}\left[\sum_{\mathbf{i}} \mathrm{D}\left(\mathrm{y}_{\mathbf{i}}, \mathrm{f}_{\mathrm{i}}\right)+\sum_{\mathrm{i}, \mathrm{j}} \mathrm{V}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)\right]$ $\operatorname{argmin}_{\mathbf{f}} \sum_{\mathbf{s} \in \boldsymbol{S}}\left[\rho_{\mathbf{1}}\left(\mathrm{d}_{\mathbf{s}}, \mathrm{f}_{\mathbf{s}}\right)+\lambda \sum_{\mathbf{n} \in \chi_{s}}\left[\rho_{\mathbf{2}}\left(\mathrm{f}_{\mathbf{s}}-\mathrm{f}_{\mathbf{n}}\right)\right]\right]$
- Data term D vs. robust data function $\rho_{1}$
- Clique term V vs. robust smoothness function $\rho_{2}$
- Over cliques rather than neighbors of each site
- Nearly same definitions on four connected grid
- Probabilistic formulation particularly helpful for learning problems
- Parameters of $D, V$ or even form of $D, V$


## Common Clique Energies

- Enforce "smoothness", robust to outliers
- Potts model
- Same or outlier (based on label identity)

$$
V_{\tau}\left(f_{i}, f_{j}\right)=0 \text { when } f_{i}=f_{j}, \tau \text { otherwise }
$$

- Truncated linear model
- Small linear change or outlier (label difference)

$$
V_{\sigma, \tau}\left(f_{i}, f_{j}\right)=\min \left(\tau, \sigma\left|f_{i}-f_{j}\right|\right)
$$

- Truncated quadratic model
- Small quadratic change or outlier (label difference)

$$
V_{\sigma, \tau}\left(f_{i}, f_{j}\right)=\min \left(\tau, \sigma\left|f_{i}-f_{j}\right|^{2}\right)
$$

## 1D Graphs (Chains)

- Simpler than 2D for illustration purposes
- Fast polynomial time algorithms
- Problem definition
- Sequence of nodes $V=(1, \ldots, n)$
- Edges between adjacent pairs (i, i+1)
- Observed value $y_{i}$ at each node
- Seek labeling $f=\left(f_{1}, \ldots, f_{n}\right), f_{i} \in \mathcal{L}$, minimizing

$$
\sum_{\mathbf{i}}\left[D\left(y_{i}, f_{i}\right)+V\left(f_{i}, f_{i+1}\right)\right] \quad\left(\text { note } V\left(f_{n}, f_{n+1}\right)=0\right)
$$

- Contrast with smoothing by convolution

$$
\begin{array}{lllllllllll}
d_{i} & 1 & 3 & 2 & 1 & 3 & 12 & 10 & 11 & 10 & 12 \\
f_{i} & 2 & 2 & 2 & 2 & 2 & 11 & 11 & 11 & 11 & 11
\end{array}
$$

## Viterbi Recurrence

- Don't need explicit min over $f=\left(f_{1}, \ldots, f_{n}\right)$
- Instead recursively compute

$$
s_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+V\left(f_{i-1}, f_{i}\right)\right)
$$

- Note $s_{i}\left(f_{i}\right)$ for given $i$ encodes a lowest cost label sequence ending in state $f_{i}$ at that node

Possible labels, values of $f_{i}$


## Viterbi Algorithm

- Find a lowest cost assignment f1, ..., fn
- Initialize

$$
s_{1}\left(f_{1}\right)=D\left(y_{1}, f_{1}\right)+\pi, \text { with } \pi \text { cost of } f_{1} \text { if not uniform }
$$

- Recurse

$$
\begin{aligned}
& s_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+V\left(f_{i-1}, f_{i}\right)\right) \\
& b_{i}\left(f_{i}\right)=\operatorname{argmin}_{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+V\left(f_{i-1}, f_{i}\right)\right)
\end{aligned}
$$

- Terminate
$\min _{f n} S_{n}\left(f_{n}\right)$, cost of cheapest path (neg log prob)
$\mathrm{f}_{\mathrm{n}}{ }^{*}=\operatorname{argmin}_{\mathrm{fn}} \mathrm{S}_{\mathrm{n}}\left(\mathrm{f}_{\mathrm{n}}\right)$
- Backtrack

$$
f_{n-1}{ }^{*}=b_{n}\left(f_{n}\right)
$$

## Viterbi Algorithm

- For sequence of $n$ data elements, with $m$ possible labels per element
- Compute $s_{i}\left(f_{i}\right)$ for each element using recurrence
- $\mathrm{O}\left(\mathrm{nm}^{2}\right)$ time
- For final node compute $f_{n}$ minimizing $s_{n}\left(f_{n}\right)$
- Trace back from node back to first node
- Minimizers computed when computing costs on "forward" pass
- First step dominates running time
- Avoid searching exponentially many paths


## Large Label Sets Problematic

- Viterbi slow with large number of labels
- $\mathrm{O}\left(\mathrm{m}^{2}\right)$ term in calculating $\mathrm{s}_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}}\right)$
- For our problems $V$ usually has a special form so can compute in linear time
- Consider linear clique energy

$$
s_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\min _{f i-1}\left(s_{i-1}\left(f_{i-1}\right)+\left|f_{i-1}-f_{i}\right|\right)
$$

- Minimization term is precisely the distance transform DTs $\mathrm{s}_{\mathrm{i}-1}$ of a function considered earlier
- Which can compute in linear time
- But linear model not robust
- Can extend to truncated linear


## Truncated Distance Cost

- Avoid explicit min $_{\text {fi-1 }}$ for each $f_{i}$
- Truncated linear model

$$
\min _{\mathrm{fi}-\mathbf{1}}\left(\mathrm{s}_{\mathbf{i}-\mathbf{1}}\left(\mathrm{f}_{\mathrm{i}-\mathbf{1}}\right)+\min \left(\tau,\left|\mathrm{f}_{\mathbf{i - 1} \mathbf{1}}-\mathrm{f}_{\mathbf{i}}\right|\right)\right)
$$

- Factor $f_{i}$ out of minimizations over $f_{i-1}$ $\min \left(\min _{\mathrm{fi}-1}\left(\mathrm{~S}_{\mathrm{i}-\mathbf{1}}\left(\mathrm{f}_{\mathrm{i}-\mathbf{1}}\right)+\tau\right)\right.$, $\left.\min _{\mathrm{fi}-1}\left(\mathrm{~s}_{\mathrm{i}-1}\left(\mathrm{f}_{\mathrm{i}-1}\right)+\left|\mathrm{f}_{\mathrm{i}-1}-\mathrm{f}_{\mathrm{i}}\right|\right)\right)$ $\min \left(\min _{\mathrm{fi}-1}\left(\mathrm{~s}_{\mathrm{i}-\mathbf{1}}\left(\mathrm{f}_{\mathrm{i}-1}\right)+\tau\right), \mathrm{DT}_{\mathbf{s i}-\mathbf{1}}\left(\mathrm{f}_{\mathrm{i}}\right)\right)$
- Analogous for truncated quadratic model
- Similar for Potts model except no need for distance transform
- O(mn) algorithm for best label sequence


## Belief Propagation

- Local message passing scheme in graph
- Every node in parallel computes messages to send to neighbors
- Iterate time-steps, t, until convergence
- Various message updating schemes
- Here consider max product for undirected graph
- Becomes min sum using costs (neg log probs)
- Message $m_{i, j, \mathbf{t}}$ sent from node $i$ to $j$ at time $t$

$$
\begin{aligned}
\mathrm{m}_{\mathbf{i}, \mathbf{j}, \mathbf{t}}\left(\mathrm{f}_{\mathbf{j}}\right)=\min _{\mathbf{f i}} & {\left[\mathrm{V}\left(\mathrm{f}_{\mathbf{i}}, \mathrm{f}_{\mathbf{j}}\right)+\mathrm{D}\left(\mathrm{y}_{\mathbf{i}}, \mathrm{f}_{\mathbf{i}}\right)\right.} \\
& \left.+\sum_{\mathbf{k} \in \boldsymbol{z i} \mathbf{i} \mathbf{j}} \mathrm{m}_{\mathbf{k}, \mathbf{i}, \mathbf{t} \mathbf{- 1}}\left(\mathrm{f}_{\mathbf{i}}\right)\right]
\end{aligned}
$$

## Belief Propagation

- After message passing "converges" at iteration T
- Each node computes final value based on neighbors

$$
b_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+\sum_{\mathbf{k} \in z i} m_{r, i, T}\left(f_{i}\right)
$$

- Select label $f_{i}$ minimizing $b_{i}$ for each node
- Corresponds to maximizing belief (probability)
- For singly-connected chain node generally has two neighbors $\mathrm{i}-1$ and $\mathrm{i}+1$

$$
m_{i, i-1, t}\left(f_{i-1}\right)=\min _{f i}\left[V\left(f_{i}, f_{i-1}\right)+D\left(y_{i}, f_{i}\right)+m_{i+1, i, t-1}\left(f_{i}\right)\right]
$$

- Analogous for $\mathrm{i}+1$ neighbor


## Belief Propagation on a Chain

- Message passed from i to i+1 $m_{i, i+1, t}\left(f_{i+1}\right)=\min _{f i}\left[V\left(f_{i}, f_{i+1}\right)+D\left(y_{i}, f_{i}\right)+m_{i-1, i, t-1}\left(f_{i}\right)\right]$
- Note relation to Viterbi recursion
- Can show BP converges to same minimum as Viterbi for chain (if unique min)



## Min Sum Belief Prop Algorithm

- For chain, two messages per node
- Node i sends messages $m_{i, i}$ to left $m_{i, r}$ to right
- Initialize: $m_{i, 1,0}=m_{i, r, 0}=(0, \ldots, 0)$ for all nodes $i$
- Update messages, for t from 1 to T

$$
\begin{aligned}
& m_{i, l, t}\left(f_{i}\right)=\min _{f i}\left[V\left(f_{i}, f_{i}\right)+D\left(y_{i}, f_{i}\right)+m_{r, i, t-1}\left(f_{i}\right)\right] \\
& m_{i, r, r},\left(f_{r}\right)=\min _{f i}\left[V\left(f_{i,}, f_{r}\right)+D\left(y_{i}, f_{i}\right)+m_{l, i, t-1}\left(f_{i}\right)\right]
\end{aligned}
$$

- Compute belief at each node

$$
b_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+m_{r, i, T}\left(f_{i}\right)+m_{\mathbf{l}, \mathbf{i}, \mathbf{T}}\left(f_{i}\right)
$$

- Select best at each node $\operatorname{argmin}_{f i} b_{i}\left(f_{i}\right)$
- For chain, global min of $\sum_{i}\left[D\left(y_{i}, f_{i}\right)+V\left(f_{i}, f_{i+1}\right)\right]$


## Relation to HMM

- Hidden Markov model
- Set of unobservable (hidden) states
- Sequence of observed values, $y_{i}$
- Transitions between states are Markov
- Depend only on previous state (or fixed number)
- State transition matrix (costs or probabilities)
- Distribution of possible observed values for each state
- Given $y_{i}$ determine best state sequence
- Widely used in speech recognition and temporal modeling


## Hidden Markov Models

- Two different but equivalent views
- Sequence of unobservable random variables and observable values
- 1D MRF with label set
- Penalties $V\left(f_{i}, f_{j}\right)$, data costs $D\left(y_{i}, f_{i}\right)$

- Hidden non-deterministic state machine
- Distribution over observable values for each state


D


## Using HMM's

- Three classical problems for HMM
- Given observation sequence $Y=y_{1}, \ldots, y_{n}$ and HMM $\lambda=(\mathrm{D}, \mathrm{V}, \pi)$

1. Compute $P(Y \mid \lambda)$, probability of observing $Y$ given the model

- Alternatively cost (negative log prob)

2. Determine the best state sequence $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ given Y

- Various definitions of best, one is MAP estimate $\operatorname{argmax}_{\mathbf{x}} \mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \lambda)$ or min cost

3. Adjust model $\lambda=(D, V, \pi)$ to maximize $P(Y \mid \lambda)$

- Learning problem often solved by EM


## HMM Inference or Decoding

- Determine the best state sequence $X$ given observation sequence $Y$
- MAP (maximum a posteriori) estimate $\operatorname{argmax}_{\mathbf{x}} \mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \lambda)$
- Equivalently minimize cost, negative log prob
- Computed using Viterbi or max-product (minsum) belief propagation
- Most likely state at each time $P\left(X_{t} \mid Y_{1}, \ldots, Y_{t}, \lambda\right)$
- Maximize probability of states individually
- Computed using forward-backward procedure or sum-product belief propagation


## 1D HMM Example

- Estimate bias of "changing coin" from sequence of observed $\{\mathrm{H}, \mathrm{T}\}$ values
- Use MAP formulation
- Find lowest cost state sequence
- States correspond to possible bias values, e.g., .10, ..., . 90 (large state space)
- Data costs $-\log \mathrm{P}\left(\mathrm{H} \mid \mathrm{x}_{\mathrm{i}}\right),-\log \mathrm{P}\left(\mathrm{T} \mid \mathrm{x}_{\mathrm{i}}\right)$
- Used to analyze time varying popularity of item downloads at Internet Archive
- Each visit results in download or not (H/T)


## 1D HMM Example

- Truncated linear penalty term $\mathrm{V}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)$
- Contrast with smoothing
- Particularly hard task for 0-1 valued data




## Algorithms for Grids (2D)

- Polynomial time for binary label set or for convex cost function $\mathrm{V}\left(\mathrm{f}_{\mathrm{i}}, \mathrm{f}_{\mathrm{j}}\right)$
- Compute minimum cut in certain graph
- NP hard in general (reduction from multi-way cut)
- Approximation methods (not global min)
- Graph cuts and "expansion moves"
- Loopy belief propagation
- Many other local minimization techniques
- Monte Carlo sampling methods, annealing, etc.
- Consider graph cuts and belief propagation
- Reasonably fast
- Can characterize the local minimum


## Evaluating 2D Energy Min Methods

- Benchmark for stereo data
- Estimate a disparity d at each pixel
- Inversely proportional to depth, closer things move farther (larger disparity between images)
- Data term $D\left(y_{i}, f_{i}\right)=\left(I\left(y_{i, u}, y_{i, v}\right)-I\left(y_{i, u}+f_{i,} y_{i, v}\right)\right)^{2}$
- Rectified images so disparities are horizontal (u)
- Ground truth and error measure



## Loopy Belief Propagation

- Apply belief propagation to graph with loops such as MRF
- No longer globally optimal result
- Results suggesting good local minimum in sense that no better minima "nearby"
- In practice works quite well
- Some of best stereo results obtained using LBP
- Relatively slow - minutes per image
- Number of iterations proportional to image diameter - propagate messages across grid
- Alternative approaches such as removing loops


## Loopy Belief Prop on Grid

- Min sum algorithm, analogous to chain
- Four message types (dirs) $m_{\mathbf{i}, \mathbf{\prime}}, m_{\mathbf{i}, r, r} m_{\mathbf{i}, \mathbf{u}}, m_{\mathbf{i}, \mathbf{d}}$
- Initialize, $m_{i, l, 0}=m_{i, r, 0}=m_{i, u, \mathbf{0}}=m_{i, d, 0}=(0, \ldots, 0)$
- Update messages, for $t$ from 1 to $T$,

$$
\left.\begin{array}{rl}
m_{i, l, t}\left(f_{i}\right)= & \min _{f i}
\end{array}\right] V\left(f_{i,}, f_{i}\right)+D\left(y_{i}, f_{i}\right)+m_{r, i, t-1}\left(f_{i}\right) .
$$

- Analogous for other three directions $\mathrm{r}, \mathrm{u}, \mathrm{d}$
- Compute beliefs,

$$
\begin{aligned}
& b_{i}\left(f_{i}\right)=D\left(y_{i}, f_{i}\right)+m_{r, i, T}\left(f_{i}\right)+m_{1, i, T}\left(f_{i}\right) \\
& +m_{u, i, T}\left(f_{i}\right)+m_{d, i, T}\left(f_{i}\right)
\end{aligned}
$$

- Select best, $\operatorname{argmin}_{f i} b_{i}\left(f_{i}\right)$


## Loopy Belief Prop Schematic

- At time step t can think of each node
- Using "incoming" messages from time t-1
- Creating new "outgoing" messages
- Store 8 messages per node
- Four directions at t-1 for others to use
- Four directions at t for i to compute
- Each message a cost for each label (distribution)


Compute $\mathrm{m}_{\mathbf{i}, \mathbf{d}, \mathbf{t}}$

## Graph Cuts

- Two label problem can be solved using minimum cut in suitably defined graph
- For many labels use expansion move heuristic
- Re-cast problem of finding labeling as sequence of binary problems
- Given a labeling, seek best labeling that "expands" particular label $\alpha$
- Binary because just consider change to $\alpha$ and leave alone as options
- Iterate repeatedly over labels


## Expansion Moves

Input labeling $f$


- Find red expansion move that most decreases energy
- Move there, then find the best blue expansion move, etc
- Done when no $\alpha$-expansion move decreases the energy, for any label $\alpha$
- Rapidly computes a strong local minimum
- Nice theoretical properties


## Expansion Move Algorithm

- The overall problem involves $k$ labels, but the key sub-problem involves only 2
- Minimize energy over all $O\left(2^{n}\right)$ labelings within a single $\alpha$-expansion move from $f$
- Each pixel $p$ either keeps its old label $f_{p}$, or acquire the new label $\alpha$
- In practice few iterations over labels
- Approach: classical problem reduction
- Reduction to computing the minimum cost s-t cut on the appropriate graph
- Fast polynomial time algorithm


## Graph Cuts for Expansion Moves

- Consider directed graph with non-negative edge weights and with two terminal nodes
- Source (node 0) and sink (node 1)
- A cut is a partition of the nodes into two sets $S, T$ such that $0 \in S, 1 \in T$
- Or, a set of edges that separate the terminals
- Binary labeling of the non-terminal nodes!
- The cost of the cut is the sum of the weights of edges from $S$ to $T$
- There are fast ways to find the cut with the minimum cost, even on very large graphs


## Graph Cut Illustration



$$
\begin{aligned}
& S=\left\{0, v_{p}\right\} \\
& T=\left\{1, v_{q}, v_{r}\right\}
\end{aligned}
$$

$$
\text { labeling }=\left\{v_{p} \leftarrow 0 ; v_{q} \leftarrow 1 ; v_{r} \leftarrow 1\right\}
$$

$$
\operatorname{cost}=A+B+D+E
$$

## Graph Cut Example



Ground Truth Results


Graph Cut Results

