

#### CS 664 Slides #8 Regularization and MRF's

**Prof. Dan Huttenlocher** Fall 2003



#### **Regularization in Low Level Vision**

- Low level vision problems concerned with estimating some quantity at each pixel
  - Visual motion (u(x,y),v(x,y))
  - Stereo disparity d(x,y)
  - Restoration of true intensity b(x,y)
- Problem under constrained
  - Only able to observe noisy values at each pixel
  - Sometimes single pixel not enough to estimate value
- Need to apply other constraints



#### Smooth but with discontinuities



First image



Second image





#### Small discontinuities important



First image



Second image

| · | - | - | - | - | - | - | - | - | ·   | •  | •        | -        | - | - | - | - | - | - | - | · | • | • | • | ۰ | • |
|---|---|---|---|---|---|---|---|---|-----|----|----------|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| · | - | - | - | - | - | - | - | - | ·   | •  | •        | -        | - | - | - | - | - | - | - | • | • | · | • | ۰ | • |
| · | - | - | - | - | - | - | - | • | ·   | •  | •        | -        | - | - | - | - | • | - | - | • | · | • | · | • | • |
| · | - | - | - | - | - | - | - | - | ·   | •  | •        | -        | - | - | - | - | - | - | - | · | • | • | • | • | • |
| · | - | - | - | - | - | - | - | • | ·   | •  | •        | -        | - | - | - | - | • | - | - | · | · | • | · | - | • |
| · | - | - | - | - | - | - | - | • | ·   | •  | •        | -        | - | - | - | - | • | - | - | · | · | • | · | - | • |
| · | - | - | - | - | - | - | - | • | •   | +- | +-       | -        | - | - | - | - | • | - | - | · | · | • | · | - | - |
| · | - | - | - | - | - | - | - | • | • • | •  | +        | -        | - | - | - | - | • | - | - | • | · | • | • | - | - |
| · | - | - | - | - | - | - | - | • | • • | •  | +        | -        | - | - | - | - | • | - | - | • | · | • | · | - | - |
| · | - | - | - | - | - | - | - | • | • • | ۰. | -        | -        | - | - | - | - | • | - | - | • | · | • | · | - | - |
| · | - | - | - | - | - | - | - | • |     |    | <b>—</b> | -        | - | - | - | - | • | - | - | • | · | • | · | - | - |
| · | - | - | - | - | - | - | - | • | 1.  |    |          | -        | - | - | - | - | • | - | - | • | · | • | · | - | • |
| · | - | - | - | - | - | - | - | • | ۰.  |    |          | -        | - | - | - | - | • | - | - | · | · | • | · | - | • |
| · | - | - | - | - | - | - | - | • | •   | -  | -        | _        | - | - | - | - | • | - | - | · | · | • | · | - | • |
| · | - | - | - | - | - | - | - | - | •   |    |          | —        | + | - | - | - | - | - | - | · | • | • | • | - | • |
| · | - | - | - | - | - | - | - | • | + - | •  | ÷        | <b>.</b> | • | - | - | - | • | - | - | • | · | • | · | - | - |
|   | - | - | - | - | - | - | - | - |     | •  | •        |          |   | - | - | - | - | - | - | • | • | • | • |   | • |



#### **Smoothness Constraints**

- Estimated values should change slowly as function of (x,y)
  - Except "boundaries" which are relatively rare
- Minimize an error function

 $\mathsf{E}(\mathsf{r}(\mathsf{x},\mathsf{y})) = \mathsf{V}(\mathsf{r}(\mathsf{x},\mathsf{y})) + \lambda \mathsf{D}_{\mathbf{I}}(\mathsf{r}(\mathsf{x},\mathsf{y}))$ 

- For r being estimated at each x,y location
- V penalizes change in r in local neighborhood
- $\mathsf{D}_{\mathbf{I}}$  penalizes r disagreeing with image data
- $\lambda$  controls tradeoff of these smoothness and data terms
  - Can itself be parameterized by x,y

#### **Regularization for Visual Motion**

- Use quadratic error function
- Smoothness term

 $V(u(x,y),v(x,y)) = \sum \sum u_x^2 + u_y^2 + v_x^2 + v_y^2$ 

- Where subscripts denote partials  $u_x = \partial u(x,y) / \partial x$ , etc.
- Data term

 $D_{\mathbf{I}}(\mathbf{u}(\mathbf{x},\mathbf{y}),\mathbf{v}(\mathbf{x},\mathbf{y})) = \sum \sum (\mathbf{I}_{\mathbf{x}} \cdot \mathbf{u} + \mathbf{I}_{\mathbf{y}} \cdot \mathbf{v} + \mathbf{I}_{\mathbf{t}})^{2}$ 

- Only for smoothly changing motion fields
  - No discontinuity boundaries
  - Does not work well in practice



#### **Problems With Regularization**

- Computational difficulty
  - Extremely high dimensional minimization problem
    - 2mn dimensional space for m×n image and motion estimation
    - If k motion values, d<sup>2mn</sup> possible solutions
    - Can solve with gradient descent methods
- Smoothness too strong a model
  - Can in principle estimate variable smoothness penalty  $\lambda_{I}(x,y)$ 
    - More difficult computation
    - Need to relate  $\lambda_{\boldsymbol{\mathrm{I}}}$  to V,  $\mathsf{D}_{\boldsymbol{\mathrm{I}}}$

#### **Regularization With Discontinuities**

- Line process
  - Estimate binary value representing when discontinuity between neighboring pixels
- Pixels as sites s∈ S (vertices in graph)
  - Neighborhood  $\mathcal{R}_s$  sites connected to s by edges
    - Grid graph 4-connected or 8-connected
  - Write smoothness term analogously as

$$\sum_{s \in S} \sum_{n \in \mathscr{R}S} (u_s - u_n)^2 + (v_s - v_n)^2$$



#### **Line Process**

 Variable smoothness penalty depending on binary estimate of discontinuity I<sub>s.n</sub>

$$\sum_{s \in S} \sum_{n \in \mathscr{R}s} \left[ \alpha_s (1 - I_{s,n}) ((u_s - u_n)^2 + (v_s - v_n)^2) + \beta_s I_{s,n} \right]$$

– With  $\alpha_{s'}$ ,  $\beta_s$  constants controlling smoothness

Minimization problem no longer as simple
 Graduated non-convexity (GNC)





### **Robust Regularization**

- Both smoothness and data constraints can be violated
  - Result not smooth at certain locations
    - Addressed by line process
  - Data values bad at certain locations
    - E.g., specularities, occlusions
    - Not addressed by line process
- Unified view: model both smoothness and data terms using robust error measures
  - Replace quadratic error which is sensitive to outliers



#### **Robust Formulation**

 Simply replace quadratic terms with robust error function ρ

$$\sum_{\mathbf{s} \in S} \left[ \rho_{\mathbf{1}} (\mathbf{I}_{\mathbf{x}} \cdot \mathbf{u}_{\mathbf{s}} + \mathbf{I}_{\mathbf{y}} \cdot \mathbf{v}_{\mathbf{s}} + \mathbf{I}_{\mathbf{t}}) + \lambda \sum_{\mathbf{n} \in \mathscr{R}} \left[ \rho_{\mathbf{2}} (\mathbf{u}_{\mathbf{s}} - \mathbf{u}_{\mathbf{n}}) + \rho_{\mathbf{2}} (\mathbf{v}_{\mathbf{s}} - \mathbf{v}_{\mathbf{n}}) \right]$$

- In practice often estimate first term over small region around s
- Some robust error functions
  - Truncated linear:  $\rho_{\tau}(x) = \min(\tau, x)$
  - Truncated quadratic:  $\rho_{\tau}(\mathbf{x}) = \min(\tau, \mathbf{x}^2)$
  - Lorentzian:  $\rho_{\sigma}(\mathbf{x}) = \log(1 + \frac{1}{2}(\mathbf{x}/\sigma)^2)$



#### **Influence Functions**

 Useful to think of error functions in terms of degree to which a given value affects the result





#### **Relation to Line Process**

- Can think of robust error function as performing "outlier rejection"
  - Influence (near) zero for outliers but non-zero for inliers
- Line process makes a binary inlier/outlier decision
  - Based on external process or on degree of difference between estimated values
- Both robust estimation and line process formulations local characterizations



#### **Relationship to MRF Models**

- Markov random field (MRF)
  - Collection of random variables
  - Graph structure models spatial relations with local neighborhoods (Markov property)
    - Explicit dependencies among pixels
- Widely used in low-level vision problems
  - Stereo, motion, segmentation
- Seek best label for each pixel
  - Bayesian model, e.g., MAP estimation
- Common to consider corresponding energy minimization problems

#### **Markov Random Fields in Vision**

- Graph G=(V,E)
  - Assume vertices indexed 1, ..., n
  - Observable variables  $y = \{y_1, ..., y_n\}$
  - Unobservable variables  $x = \{x_1, ..., x_n\}$
  - Edges connect each  $x_i$  to certain neighbors  $\mathcal{R}_{xi}$
  - Edges connect each x<sub>i</sub> to y<sub>i</sub>
  - Consider cliques of size 2
    - Recall clique is fully connected sub-graph
    - 4-connected grid or 2-connected chain





#### **MRF Models in Vision**

- Prior P(x) factors into product of functions over cliques
  - Due to Hammersly-Clifford Theorem

 $\mathsf{P}(\mathsf{x}) = \prod_{\mathbf{C}} \Psi_{\mathbf{C}}(\mathsf{x}_{\mathbf{c}})$ 

- $\Psi_{c}$  termed clique potential, of form exp(-V<sub>c</sub>)
- For clique size 2 (cliques correspond to edges)  $P(x) = \prod_{i,j} \Psi_{ij}(x_i, x_j)$
- Probability of hidden and observed values  $P(x,y) = \prod_{i,j} \Psi_{ij}(x_i,x_j) \prod_i \Psi_{ii}(x_i,y_i)$ - Given particular clique energy V<sub>ij</sub> and observed
  - y, seek values of x maximizing P(x,y)

#### **Markov Property**

- Neighborhoods completely characterize conditional distributions
  - Solving a global problem with local relationships
- Probability of values over subset S given remainder same as for that subset given its neighborhood

- Given 
$$S \subset V$$
 and  $S^c = V - S$ 

 $\mathsf{P}(\mathsf{x}_{\mathbf{S}} \mid \mathsf{x}_{\mathbf{Sc}}) = \mathsf{P}(\mathsf{x}_{\mathbf{S}} \mid \mathscr{R}_{\mathbf{xs}})$ 

Conceptually and computationally useful



#### **MRF Estimation**

- Various ways of maximizing probability
  - Common to use MAP estimate  $\operatorname{argmax}_{\mathbf{x}} P(\mathbf{x}|\mathbf{y})$  $\operatorname{argmax}_{\mathbf{x}} \prod_{\mathbf{i},\mathbf{i}} \Psi_{\mathbf{ij}}(\mathbf{x}_{\mathbf{i}},\mathbf{x}_{\mathbf{j}}) \prod_{\mathbf{i}} \Phi_{\mathbf{i}}(\mathbf{x}_{\mathbf{i}},\mathbf{y}_{\mathbf{i}})$
- Probabilities hard to compute with
  - Use logs (or often negative log) argmin<sub>x</sub>  $\sum_{i,j} V_{ij}(x_i,x_j) + \sum_i D_i(x_i,y_i)$
- In energy function formulation often think of assigning best label f<sub>i</sub>∈∠ to each node v<sub>i</sub> given data y<sub>i</sub>

 $argmin_{\mathbf{f}} \left[ \sum_{\mathbf{i}} D(y_{\mathbf{i}}, f_{\mathbf{i}}) + \sum_{\mathbf{i}, \mathbf{j}} V(f_{\mathbf{i}}, f_{\mathbf{j}}) \right]$ 



#### **Almost Same as Regularization**

- Summation of data and smoothness terms argmin<sub>f</sub> [Σ<sub>i</sub> D(y<sub>i</sub>,f<sub>i</sub>) + Σ<sub>i,j</sub>V(f<sub>i</sub>,f<sub>j</sub>)] argmin<sub>f</sub> Σ<sub>s∈S</sub> [ρ<sub>1</sub>(d<sub>s</sub>,f<sub>s</sub>) + λ Σ<sub>n∈%s</sub> [ρ<sub>2</sub>(f<sub>s</sub>-f<sub>n</sub>)]]
  - Data term D vs. robust data function  $\rho_1$
  - Clique term V vs. robust smoothness function  $\rho_2$ 
    - Over cliques rather than neighbors of each site
    - Nearly same definitions on four connected grid
- Probabilistic formulation particularly helpful for learning problems
  - Parameters of D, V or even form of D,V

# **Common Clique Energies**

- Enforce "smoothness", robust to outliers
  - Potts model
    - Same or outlier (based on label identity)

 $V_{\tau}(f_{i},f_{j}) = 0$  when  $f_{i}=f_{j}$ ,  $\tau$  otherwise

- Truncated linear model
  - Small linear change or outlier (label difference)

 $V_{\sigma,\tau}(f_i,f_j) = \min(\tau, \sigma|f_i-f_j|)$ 

– Truncated quadratic model

• Small quadratic change or outlier (label difference)

 $V_{\sigma,\tau}(f_i,f_j) = \min(\tau, \sigma |f_i - f_j|^2)$ 



# **1D Graphs (Chains)**

- Simpler than 2D for illustration purposes
- Fast polynomial time algorithms
- Problem definition
  - Sequence of nodes V=(1, ..., n)
  - Edges between adjacent pairs (i, i+1)
  - Observed value y<sub>i</sub> at each node
  - Seek labeling  $f=(f_1, ..., f_n), f_i \in \mathcal{L}$ , minimizing

 $\sum_{i} [D(y_{i}, f_{i}) + V(f_{i}, f_{i+1})] \quad (note V(f_{n}, f_{n+1})=0)$ 

Contrast with smoothing by convolution

#### Viterbi Recurrence

- Don't need explicit min over f=(f<sub>1</sub>, ..., f<sub>n</sub>)
  - Instead recursively compute

 $s_i(f_i) = D(y_i, f_i) + min_{fi-1} (s_{i-1}(f_{i-1}) + V(f_{i-1}, f_i))$ 

– Note  $s_i(f_i)$  for given i encodes a lowest cost label sequence ending in state  $f_i$  at that node





## Viterbi Algorithm

- Find a lowest cost assignment f1, ..., fn
- Initialize

 $s_1(f_1) = D(y_1, f_1) + \pi$ , with  $\pi$  cost of  $f_1$  if not uniform

#### Recurse

$$\begin{split} s_{i}(f_{i}) &= \mathsf{D}(\mathsf{y}_{i}, f_{i}) + \mathsf{min}_{fi-1} \left( \mathsf{s}_{i-1}(f_{i-1}) + \mathsf{V}(f_{i-1}, f_{i}) \right) \\ b_{i}(f_{i}) &= \mathsf{argmin}_{fi-1} \left( \mathsf{s}_{i-1}(f_{i-1}) + \mathsf{V}(f_{i-1}, f_{i}) \right) \end{split}$$

#### Terminate

$$\label{eq:sigma_n} \begin{split} \min_{f_n} s_n(f_n) \;, \; \text{cost of cheapest path (neg log prob)} \\ f_n^* &= \text{argmin}_{f_n} \; s_n(f_n) \end{split}$$

Backtrack

$$f_{n-1}^* = b_n(f_n)$$

# Viterbi Algorithm

- For sequence of n data elements, with m possible labels per element
  - Compute s<sub>i</sub>(f<sub>i</sub>) for each element using recurrence
    - O(nm<sup>2</sup>) time
  - For final node compute  $f_n$  minimizing  $s_n(f_n)$
  - Trace back from node back to first node
    - Minimizers computed when computing costs on "forward" pass
- First step dominates running time
- Avoid searching exponentially many paths

#### **Large Label Sets Problematic**

- Viterbi slow with large number of labels
   O(m<sup>2</sup>) term in calculating s<sub>i</sub>(f<sub>i</sub>)
- For our problems V usually has a special form so can compute in linear time
  - Consider linear clique energy

 $s_{i}(f_{i}) = D(y_{i}, f_{i}) + \min_{f_{i-1}} (s_{i-1}(f_{i-1}) + |f_{i-1}-f_{i}|)$ 

- Minimization term is precisely the distance transform  $\mathsf{DTs}_{i-1}$  of a function considered earlier
  - Which can compute in linear time
- But linear model not robust
  - Can extend to truncated linear

#### **Truncated Distance Cost**

- Avoid explicit min<sub>fi-1</sub> for each f<sub>i</sub>
  - Truncated linear model

 $\min_{f_{i-1}} (s_{i-1}(f_{i-1}) + \min(\tau, |f_{i-1}-f_i|))$ 

- Factor  $f_i$  out of minimizations over  $f_{i-1}$ min(min<sub>fi-1</sub>( $s_{i-1}(f_{i-1})+\tau$ ), min<sub>fi-1</sub>( $s_{i-1}(f_{i-1})+|f_{i-1}-f_i|$ )) min(min<sub>fi-1</sub>( $s_{i-1}(f_{i-1})+\tau$ ),  $DT_{si-1}(f_i)$ )
- Analogous for truncated quadratic model
- Similar for Potts model except no need for distance transform
- O(mn) algorithm for best label sequence

#### **Belief Propagation**

- Local message passing scheme in graph
  - Every node in parallel computes messages to send to neighbors
    - Iterate time-steps, t, until convergence
- Various message updating schemes
  - Here consider max product for undirected graph
    - Becomes min sum using costs (neg log probs)

- Message 
$$m_{i,j,t}$$
 sent from node i to j at time t  
 $m_{i,j,t}(f_j) = min_{fi} [V(f_i,f_j)+D(y_i,f_i) + \sum_{k \in \mathscr{R}i \setminus j} m_{k,i,t-1}(f_i)]$ 

### **Belief Propagation**

- After message passing "converges" at iteration T
  - Each node computes final value based on neighbors

 $b_i(f_i) = D(y_i, f_i) + \sum_{k \in \mathcal{R}_i} m_{r,i,T}(f_i)$ 

– Select label  $f_i$  minimizing  $b_i$  for each node

- Corresponds to maximizing belief (probability)
- For singly-connected chain node generally has two neighbors i-1 and i+1

 $m_{i,i-1,t}(f_{i-1}) = min_{fi} \left[ V(f_i, f_{i-1}) + D(y_i, f_i) + m_{i+1,i,t-1}(f_i) \right]$ 

Analogous for i+1 neighbor

#### **Belief Propagation on a Chain**

- Message passed from i to i+1 m<sub>i,i+1,t</sub>(f<sub>i+1</sub>) = min<sub>fi</sub> [V(f<sub>i</sub>,f<sub>i+1</sub>)+D(y<sub>i</sub>,f<sub>i</sub>)+m<sub>i-1,i,t-1</sub>(f<sub>i</sub>)]
- Note relation to Viterbi recursion
- Can show BP converges to same minimum as Viterbi for chain (if unique min)





#### **Min Sum Belief Prop Algorithm**

- For chain, two messages per node
  - Node i sends messages  $m_{i,l}$  to left  $m_{i,r}$  to right
  - Initialize:  $m_{i,l,0}=m_{i,r,0}=(0, ..., 0)$  for all nodes i
  - Update messages, for t from 1 to T

$$\begin{split} m_{i,l,t}(f_l) &= \min_{f_i} \left[ V(f_i,f_l) + D(y_i,f_i) + m_{r,i,t-1}(f_i) \right] \\ m_{i,r,t}(f_r) &= \min_{f_i} \left[ V(f_i,f_r) + D(y_i,f_i) + m_{l,i,t-1}(f_i) \right] \end{split}$$

Compute belief at each node

 $b_{i}(f_{i}) = D(y_{i},f_{i}) + m_{r,i,T}(f_{i}) + m_{I,i,T}(f_{i})$ 

- Select best at each node  $\operatorname{argmin}_{fi} b_i(f_i)$
- For chain, global min of  $\sum_i [D(y_i, f_i) + V(f_i, f_{i+1})]$

#### **Relation to HMM**

- Hidden Markov model
  - Set of unobservable (hidden) states
  - Sequence of observed values, y<sub>i</sub>
  - Transitions between states are Markov
    - Depend only on previous state (or fixed number)
    - State transition matrix (costs or probabilities)
  - Distribution of possible observed values for each state
  - Given y<sub>i</sub> determine best state sequence
- Widely used in speech recognition and temporal modeling



## **Hidden Markov Models**

- Two different but equivalent views
  - Sequence of unobservable random variables and observable values
    - 1D MRF with label set
    - Penalties V(f<sub>i</sub>,f<sub>j</sub>), data costs D(y<sub>i</sub>,f<sub>i</sub>)



- Hidden non-deterministic state machine
  - Distribution over observable values for each state



# Using HMM's

- Three classical problems for HMM
  - Given observation sequence  $Y=y_1, ..., y_n$  and HMM  $\lambda=(D,V,\pi)$
  - 1. Compute  $P(Y|\lambda)$ , probability of observing Y given the model
    - Alternatively cost (negative log prob)
  - Determine the best state sequence x<sub>1</sub>, ..., x<sub>n</sub> given Y
    - Various definitions of best, one is MAP estimate argmax<sub>x</sub>  $P(X|Y,\lambda)$  or min cost
  - **3.** Adjust model  $\lambda = (D, V, \pi)$  to maximize  $P(Y|\lambda)$ 
    - Learning problem often solved by EM

#### **HMM Inference or Decoding**

- Determine the best state sequence X given observation sequence Y
  - MAP (maximum a posteriori) estimate
     argmax<sub>x</sub> P(X|Y,λ)
    - Equivalently minimize cost, negative log prob
    - Computed using Viterbi or max-product (minsum) belief propagation
  - Most likely state at each time  $P(X_t|Y_1,...,Y_t,\lambda)$ 
    - Maximize probability of states individually
    - Computed using forward-backward procedure or sum-product belief propagation



#### **1D HMM Example**

- Estimate bias of "changing coin" from sequence of observed {H,T} values
  - Use MAP formulation
    - Find lowest cost state sequence
- States correspond to possible bias values, e.g., .10, ..., .90 (large state space)

- Data costs  $-\log P(H|x_i)$ ,  $-\log P(T|x_i)$ 

 Used to analyze time varying popularity of item downloads at Internet Archive

Each visit results in download or not (H/T)



#### **1D HMM Example**

- Truncated linear penalty term V(f<sub>i</sub>,f<sub>i</sub>)
  - Contrast with smoothing
  - Particularly hard task for 0-1 valued data



# **Algorithms for Grids (2D)**

- Polynomial time for binary label set or for convex cost function V(f<sub>i</sub>,f<sub>i</sub>)
  - Compute minimum cut in certain graph
  - NP hard in general (reduction from multi-way cut)
- Approximation methods (not global min)
  - Graph cuts and "expansion moves"
  - Loopy belief propagation
  - Many other local minimization techniques
    - Monte Carlo sampling methods, annealing, etc.
  - Consider graph cuts and belief propagation
    - Reasonably fast
    - Can characterize the local minimum

### **Evaluating 2D Energy Min Methods**

- Benchmark for stereo data
  - Estimate a disparity d at each pixel
    - Inversely proportional to depth, closer things move farther (larger disparity between images)
    - Data term  $D(y_i, f_i) = (I(y_{i,u}, y_{i,v}) I(y_{i,u} + f_i, y_{i,v}))^2$
  - Rectified images so disparities are horizontal (u)
  - Ground truth and error measure



## **Loopy Belief Propagation**

- Apply belief propagation to graph with loops such as MRF
  - No longer globally optimal result
  - Results suggesting good local minimum in sense that no better minima "nearby"
- In practice works quite well
  - Some of best stereo results obtained using LBP
  - Relatively slow minutes per image
    - Number of iterations proportional to image diameter – propagate messages across grid
  - Alternative approaches such as removing loops



#### **Loopy Belief Prop on Grid**

- Min sum algorithm, analogous to chain
  - Four message types (dirs) m<sub>i,I</sub>, m<sub>i,r</sub>, m<sub>i,u</sub>, m<sub>i,d</sub>
  - Initialize,  $m_{i,l,0} = m_{i,r,0} = m_{i,u,0} = m_{i,d,0} = (0, ..., 0)$
  - Update messages, for t from 1 to T,  $m_{i,l,t}(f_l) = min_{fi} [V(f_i,f_l)+D(y_i,f_i)+m_{r,i,t-1}(f_i) + m_{u,i,t-1}(f_i)+m_{d,i,t-1}(f_i)]$ 
    - Analogous for other three directions r,u,d
  - Compute beliefs,

$$b_{i}(f_{i}) = D(y_{i},f_{i}) + m_{r,i,T}(f_{i}) + m_{l,i,T}(f_{i}) + m_{u,i,T}(f_{i}) + m_{d,i,T}(f_{i})$$

– Select best, argmin<sub>fi</sub> b<sub>i</sub>(f<sub>i</sub>)

## **Loopy Belief Prop Schematic**

- At time step t can think of each node
  - Using "incoming" messages from time t-1
  - Creating new "outgoing" messages
- Store 8 messages per node
  - Four directions at t-1 for others to use
  - Four directions at t for i to compute
  - Each message a cost for each label (distribution)





### **Graph Cuts**

- Two label problem can be solved using minimum cut in suitably defined graph
- For many labels use expansion move heuristic
  - Re-cast problem of finding labeling as sequence of binary problems
  - Given a labeling, seek best labeling that "expands" particular label  $\boldsymbol{\alpha}$ 
    - $\bullet$  Binary because just consider change to  $\alpha$  and leave alone as options
  - Iterate repeatedly over labels



#### **Expansion Moves**

# Input labeling fRed expansion move from f

- Find red expansion move that most decreases energy
  - Move there, then find the best blue expansion move, etc
  - Done when no  $\alpha\text{-expansion}$  move decreases the energy, for any label  $\alpha$
  - Rapidly computes a strong local minimum
- Nice theoretical properties



#### **Expansion Move Algorithm**

- The overall problem involves k labels, but the key sub-problem involves only 2
  - Minimize energy over all  $O(2^n)$  labelings within a single  $\alpha$ -expansion move from f
  - Each pixel p either keeps its old label  $f_p$  , or acquire the new label  $\alpha$
  - In practice few iterations over labels
- Approach: classical problem reduction
  - Reduction to computing the minimum cost s-t cut on the appropriate graph
    - Fast polynomial time algorithm



#### **Graph Cuts for Expansion Moves**

 Consider directed graph with non-negative edge weights and with two terminal nodes

- Source (node 0) and sink (node 1)

- A *cut* is a partition of the nodes into two sets S,T such that  $0 \in S$ ,  $1 \in T$ 
  - Or, a set of edges that separate the terminals
  - Binary labeling of the non-terminal nodes!
- The cost of the cut is the sum of the weights of edges from S to T
  - There are fast ways to find the cut with the minimum cost, even on very large graphs

#### **Graph Cut Illustration**

$$C \qquad D \qquad E \qquad V_p \qquad V_q \qquad V_r \qquad S = \{0, V_p\} \\ T = \{1, V_q, V_r\} \\ labeling = \{V_p \leftarrow 0; V_q \leftarrow 1; V_r \leftarrow 1\} \\ cost = A + B + D + E$$



#### **Graph Cut Example**



#### Ground Truth Results

#### Graph Cut Results

