CS 664 Slides \#7 Visual Motion

Prof. Dan Huttenlocher Fall 2003

Visual Motion

- Over sequence of images can determine which pixels move where
- Differs from motion in the world
- Camera motion
- Pan, tilt, zoom
- Motion parallax
- Information about depth from camera motion
- Scene motion
- Reveals independent objects and behaviors
- Un-detectable motion
- No/low intensity variation

Some Uses of Visual Motion

- Human-machine interaction
- Animation, gestures, facial expressions
- Surveillance and monitoring
- Tracking and analyzing behaviors
- Collision detection and avoidance
- Camera stabilization
- Remove jitter
- Autonomous navigation
- Path finding and depth from parallax
- Constructing panoramic mosaics

Motion Analysis in Video

- Video insertion
- Compute motion in one image sequence
- Use to transform frames of another sequence and superimpose
- Today used to insert signs and markings into sporting events
- Panoramic mosaics
- Synthesized views from video sequence

Estimating Visual Motion

- Historically two different approaches
- Direct methods, based on local image derivatives at each pixel
- Feature based methods, sparse correspondence
- We will focus on direct methods
- Used most in practice
- Recover image motion from spatio-temporal variations in brightness
- Dense estimates but can be sensitive to variations in appearance

Direct Motion Estimation Methods

- Based on the following assumptions
- Every pixel in image I goes to some location in subsequent image J
- Overall brightness of images I,J does not change (much)
- Called brightness constancy equation

$$
I(x, y) \approx J(x+u(x, y), y+v(x, y))
$$

1	2	3	4
5	6	7	8
9	10	11	12
15	16	13	14
I			

5	6	7	8
1	2	3	4
12	11	10	9
13	14	15	16
J			

0	0	0	0	
0	0	0	0	
3	1	-1	-3	
2	2	-2	-2	
U				

1	1	1	1	
-1	-1	-1	-1	
0	0	0	0	
0	0	0	0	
V				

Using Brightness Constancy

- Minimization formulation
- Seek ($u(x, y), v(x, y)$) minimizing error

$$
\left(I(x, y)-J(x+u(x, y), y+v(x, y))^{2}\right.
$$

- Not practical to search explicitly!
- Linearization
- Relate motion to image derivatives
- Gradient constraint
- Assuming small u,v (on order of a pixel)
- First order term of Taylor series expansion of brightness constancy

Gradient Constraint

- One-dimensional example - linearization
- Estimate displacement d using derivative
- Two functions $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{x}-\mathrm{d})$
- Taylor series expansion

$$
f(x-d)=f(x)-d f^{\prime}(x)+E
$$

- Where f^{\prime} denotes derivative
- Now write difference as

$$
f(x)-g(x)=d f^{\prime}(x)+E
$$

- Neglecting higher order terms

$$
\delta=(f(x)-g(x)) / f^{\prime}(x)
$$

- Note only for small d

Gradient Constraint (or Optical Flow Constraint)

- Same approach extends naturally to 2D

$$
\mathrm{I}(\mathrm{x}, \mathrm{y}) \approx \mathrm{J}(\mathrm{x}+\mathbf{u}, \mathrm{y}+\mathbf{v}), \mathbf{u}=\mathrm{u}(\mathrm{x}, \mathrm{y}), \mathbf{v}=\mathrm{v}(\mathrm{x}, \mathrm{y})
$$

- Assume time-varying image intensity well approximated by first order Taylor series

$$
\mathrm{J}(\mathrm{x}+\mathbf{u}, \mathrm{y}+\mathbf{v}) \approx \mathrm{I}(\mathrm{x}, \mathrm{y})+\mathrm{I}_{\mathbf{x}}(\mathrm{x}, \mathrm{y}) \cdot \mathbf{u}+\mathrm{I}_{\mathbf{y}}(\mathrm{x}, \mathrm{y}) \cdot \mathbf{v}+\mathrm{I}_{\mathbf{t}}
$$

- Substituting

$$
\mathrm{I}_{\mathbf{x}}(\mathrm{x}, \mathrm{y}) \cdot \mathbf{u}+\mathrm{I}_{\mathbf{y}}(\mathrm{x}, \mathrm{y}) \cdot \mathbf{v} \approx-\mathrm{I}_{\mathbf{t}}
$$

- Using gradient notation

$$
\nabla \mathrm{I} \cdot(\mathbf{u}, \mathbf{v}) \approx-\mathrm{I}_{\mathbf{t}}
$$

- Linear constraint on motion (\mathbf{u}, \mathbf{v}) at each pixel
- Can only estimate motion in gradient direction

Aperture Problem (Normal Flow)

- Can only measure motion in direction normal to edge (along gradient)

Aperture Problem (Normal Flow)

- Gradient constraint defines line in (u,v) space

$$
\nabla \mathrm{I} \cdot(\mathbf{u}, \mathbf{v}) \approx-\mathrm{I}_{\mathbf{t}}
$$

- Methods based solely on per pixel estimates don't work well

Combining Local Constraints

- Each pixel defines linear constraint on possible (u, v) displacement
- For set of pixels with same displacement combine constraints to get estimate
- For pixels with different displacements, somehow identify that is case

Translational Motion

- Assume single displacement (u,v) for all pixels within some region of image
- Over-constrained system of linear equations $I_{\mathbf{x}}(x, y) \cdot u+I_{\mathbf{y}}(x, y) \cdot v=-I_{\mathbf{t}}$
- Find least squares solution
- In matrix form: $\min _{z} \| D z$ - $t \|$

$$
\begin{aligned}
& \text { where } D=\left(\begin{array}{cc}
\mathrm{I}_{\mathrm{x}}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) & \mathrm{I}_{\mathrm{y}}\left(\mathrm{x}_{1}, y_{1}\right) \\
\vdots & \vdots \\
\mathrm{I}_{\mathrm{x}}\left(\mathrm{x}_{\mathrm{n}}, y_{\mathrm{n}}\right) & \mathrm{I}_{\mathrm{y}}\left(\mathrm{x}_{\mathrm{n}}, y_{\mathrm{n}}\right)
\end{array}\right) \\
& \text { and } t=\left[\begin{array}{llll}
I_{t}\left(x_{1}, y_{1}\right) & \ldots & I_{t}\left(x_{n}, y_{n}\right)
\end{array}\right]^{\top}
\end{aligned}
$$

Least Squares Solution

- $z^{*}=\left(D^{\top} D\right)^{-1} D^{\top} t$
- Method of normal equations, can derive from setting partial derivatives to zero

$$
D^{\top} D=\left(\begin{array}{cc}
\Sigma I_{x}^{2} & \Sigma I_{x} I_{y} \\
\sum I_{x} I_{y} & \Sigma I_{y}^{2}
\end{array}\right) \quad D^{\top} t=\binom{\sum I_{x} I_{t}}{\sum I_{y} I_{t}}
$$

- Inverse of 2×2 closed form

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad A^{-1}=1 /(a d-b c)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Where $\operatorname{det}(\mathrm{A})=\mathrm{ad}-\mathrm{bc}$ not (near) zero

Translational Motion

- Can estimate small translation over local patch around each pixel
- Fast using box sums
- Note relation to corner detection
- Poor estimate if A nearly singular
- Also poor if patch contains more than one underlying motion
- Better handling of multiple motions
- Robust statistical techniques
- Handling larger translations
- Pyramid method

Multiple Motions

- Robust statistical techniques for finding predominant motion in a region
- Consider approach of iteratively reweighted least squares (IRLS)
- As illustration of robust methods
- Generalize minimization problem to $\min _{z}\|W(D z-t)\|$
- Weight matrix W is diagonal
- Lessen importance of pixels that don't match
- Iterate to find "good" weights
- Note in unweighted case W is identity matrix

Finding Predominant Motion

- Minimization generalizes in obvious way

$$
z^{*}=\left(D^{\top} W^{2} D\right)^{-1} D^{\top} W^{2} t
$$

- Determining good weights to use
- Start by computing least squares solution, zo 0
- Iteratively compute better solutions
- Compute error for each pixel based on previous solution $z^{\mathbf{k}-\mathbf{1}}$ and use that to set weight per pixel
- Depends on initial solution being good enough to allow "bad pixels" to have largest error
- Have to measure error based on image intensity matches, it's the only thing we can measure

Updating Weights

- To solve for z^{k} given z^{k-1}
- Create weights $W^{\mathbf{k}}=\operatorname{diag}\left(W_{\mathbf{1}}{ }^{\mathbf{k}} \ldots \mathrm{W}_{\mathbf{n}}{ }^{\mathbf{k}}\right)$ where

$$
w_{i}^{k}=\left\{\begin{array}{l}
1 \text { if } r_{i}{ }^{\mathbf{k}-\mathbf{1}} \leq c \\
c / r_{i}{ }^{\mathbf{k}-\mathbf{1}} \text { otherwise }
\end{array}\right.
$$

- Where $r_{\mathbf{i}}{ }^{\mathbf{k}-\mathbf{1}}$ is measure of error at i -th pixel with motion estimate from iteration $\mathrm{k}-1$
- Compare i-th pixel value to matching pixel of other image (using $z^{\mathbf{k - 1}}$ for correspondence)
- And c is set based on robust measure of good versus bad data, such as median
- Common value is $1 / .6745$ median $\left(r_{\mathbf{i}}{ }^{\mathbf{k} \mathbf{- 1}}\right.$)

Weights Example

$w_{i}{ }^{\mathbf{k}}: 1,1,1,1,1,1, .24, .29, .24$

Global Motion Estimation

- Estimate motion vectors that are parameterized over some region
- Each vector fits some low-order model of how vectors change
- Affine motion model is commonly used
$u(x, y)=a_{1}+a_{2} x+a_{3} y$
$v(x, y)=a_{4}+a_{5} x+a_{6} y$
- Substituting into grad. constr. equation $I_{x}\left(a_{1}+a_{2} x+a_{3} y\right)+I_{y}\left(a_{4}+a_{5} x+a_{6} y\right) \approx-I_{t}$
- Each pixel provides a linear constraint in six unknowns

Affine Transformations

- Consider points (x, y) in plane rather than vectors for the moment
- Linear transformation and translation

$$
\begin{aligned}
& x^{\prime}=a_{1}+a_{2} x+a_{3} y \\
& y^{\prime}=a_{4}+a_{5} x+a_{6} y
\end{aligned}
$$

- In matrix form $A(z)=L z+b$

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left(\begin{array}{ll}
a_{2} & a_{3} \\
a_{5} & a_{6}
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
a_{1} \\
a_{4}
\end{array}\right]
$$

- Maps any triangle to any triangle
- Defined by three corresponding pairs of points

Why Affine Transformations

- Simple (and often inaccurate) model of projection
- Point (x, y, z) in space maps to (x, y) in image
- Orthographic or parallel projection
- Somewhat reasonable model for telephoto lens
- Yields affine transformation of plane for viewing "flat objects"
- 3D rotation, translation followed by orthographic projection and scaling

Affine Motion Estimation

- Minimization problem become that of estimating the parameters $a_{1}, \ldots a_{6}$
- Rather than just two parameters u,v
- Still (over-constrained) linear system but in more unknowns
- Again use least squares to solve
- Separable into two independent 3 variable problems
- a_{1}, a_{2}, a_{3} reflect only u-component of motion
$-a_{4}, a_{5}, a_{6}$ reflect only v-component of motion

Affine Motion Equations

- Again compute ($\left.D^{\top} D\right)^{-1} D^{\top} t$
- Or (re)weighted version for IRLS
- Now two 3×3 problems, one for I_{x} and one for I_{y}, as opposed to single $2 x 2$ problem
- Problem for I_{x} and u motion (I_{y} analogous)
- T remains same, D changes

$$
D=\left(\begin{array}{ccc}
\mathrm{I}_{\mathbf{x} 1} \mathrm{x}_{1} & \mathrm{I}_{\mathbf{x} 1} \mathrm{y}_{1} & \mathrm{I}_{\mathbf{x 1}} \\
\vdots & \vdots & \vdots \\
\mathrm{I}_{\mathrm{xn}} \mathrm{x}_{\mathrm{n}} & \mathrm{I}_{\mathrm{xn}} \mathrm{y}_{n} & \mathrm{I}_{\mathbf{x n}}
\end{array}\right)
$$

Multiple (Layered) Motions

- Combining global parametric motion estimation with robust estimation
- Calculate predominant parameterized motion over entire image (e.g., affine)
- Corresponds to largest planar surface in scene under orthographic projection
- If doesn't occupy majority of pixels robust estimator will probably fail to recover its motion
- Outlier pixels (low weights in IRLS) are not part of this surface
- Recursively try estimating their motion
- If no good estimate, then remain outliers

Other Global Motion Models

- The affine model is simple but not that accurate in some imaging situations
- For instance "pinhole" rather than "parallel" camera model for closer objects
- Non-planar surfaces
- Explicit modeling of motion parallax
- Projective planar case

$$
\begin{aligned}
& x^{\prime}=\left(h_{1}+h_{2} x+h_{3} y\right) /\left(h_{7}+h_{8} x+h_{9} y\right) \\
& y^{\prime}=\left(h_{4}+h_{5} x+h_{6} y\right) /\left(h_{7}+h_{8} x+h_{9} y\right) \\
& \text { and } u=x^{\prime}-x, v=y^{\prime}-y
\end{aligned}
$$

- 3D models such as residual planar parallax

Handling Larger Motions

- Methods based on image gradients are restricted to small displacements
- Two different approaches
- Abandon gradient method and explicitly search over possible translations
- Computationally expensive to do for every pixel
- Consider shifts and products of image patch
- Block motion provides estimates just for certain pixels, used in compression (e.g., MPEG)
- Pyramid to guarantee small motions
- At top level small motion
- At each level small deviation from one above

Coarse to Fine Motion Estimation

- Estimate residual motion at each level of Gaussian pyramid

Pyramid of image I

Coarse to Fine Estimation

- Compute M^{k}, estimate of motion at level k
- Can be local motion estimate ($\mathbf{u}^{\mathbf{k}}, \mathrm{v}^{\mathbf{k}}$)
- Vector field with motion of patch at each pixel
- Can be global motion estimate
- Parametric model (e.g., affine) of dominant motion for entire image
- Choose max k such that motion about one pixel
- Apply M^{k} at level $\mathrm{k}-1$ and estimate remaining motion at that level, iterate
- Local estimates: shift $\mathrm{I}^{\mathbf{k}}$ by 2($\left.\mathrm{u}^{\mathbf{k}}, \mathrm{v}^{\mathbf{k}}\right)$
- Global estimates: apply inverse transform to $\mathrm{J}^{\mathbf{k}-\mathbf{1}}$

Global Motion Coarse to Fine

- Compute transformation Tk mapping pixels of I^{k} to J^{k}
- Warp image $\mathrm{Jk}^{\mathrm{k}-1}$ using T^{k}
- Apply inverse of T^{k}
- Double resolution of Tk^{k} (translations double)
- Compute transformation $\mathrm{T}^{\mathrm{k}-1}$ mapping pixels of I^{k} to warped $\mathrm{J}^{\mathrm{k}-1}$
- Estimate of "residual" motion at this level
- Total estimate of motion at this level is composition of $\mathrm{T}^{\mathrm{k}-1}$ and resolution doubled T^{k}
- In case of translation just add them

Affine Mosaic Example

- Coarse-to-fine affine motion
- Pan tilt camera sweeping repeatedly over scene
- Moving objects removed from background
- Outliers in motion estimate, use other scans

SSD

- An alternative to gradient based methods is template matching
- Treat a rectangle around each pixel as a "template" to find best match in other image
- Search over possible translations minimizing some error criterion (or maximizing quality)
- Generally use sum squared difference (SSD)

$$
\Sigma \Sigma(\mathrm{I}(\mathrm{x}, \mathrm{y})-\mathrm{J}(\mathrm{x}+\mathrm{u}, \mathrm{y}+\mathrm{v}))^{2}
$$

- Sometimes compute cross correlation
- Compute over local neighborhood

