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Visual Motion

Over sequence of images can determine 
which pixels move where
Differs from motion in the world
– Camera motion

• Pan, tilt, zoom

– Motion parallax
• Information about depth from camera motion

– Scene motion
• Reveals independent objects and behaviors

– Un-detectable motion 
• No/low intensity variation
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Some Uses of Visual Motion

Human-machine interaction
– Animation, gestures, facial expressions

Surveillance and monitoring
– Tracking and analyzing behaviors

• Collision detection and avoidance

Camera stabilization
– Remove jitter

Autonomous navigation
– Path finding and depth from parallax

Constructing panoramic mosaics
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Motion Analysis in Video

Video insertion
– Compute motion in one image sequence
– Use to transform frames of another sequence 

and superimpose
– Today used to insert signs and markings into 

sporting events

Panoramic mosaics
– Synthesized views from video sequence
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Estimating Visual Motion

Historically two different approaches
– Direct methods, based on local image 

derivatives at each pixel
– Feature based methods, sparse 

correspondence

We will focus on direct methods
– Used most in practice
– Recover image motion from spatio-temporal 

variations in brightness
– Dense estimates but can be sensitive to 

variations in appearance



6

Direct Motion Estimation Methods

Based on the following assumptions
– Every pixel in image I goes to some location in 

subsequent image J
– Overall brightness of images I,J does not 

change (much)

Called brightness constancy equation
I(x,y) ≈ J(x+u(x,y), y+v(x,y))
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Using Brightness Constancy

Minimization formulation
– Seek (u(x,y),v(x,y)) minimizing error

(I(x,y)-J(x+u(x,y),y+v(x,y))2

– Not practical to search explicitly!

Linearization 
– Relate motion to image derivatives

• Gradient constraint

– Assuming small u,v (on order of a pixel)
– First order term of Taylor series expansion of 

brightness constancy
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Gradient Constraint

One-dimensional example – linearization
– Estimate displacement d using derivative

• Two functions f(x) and g(x)=f(x-d)

– Taylor series expansion
f(x-d) = f(x) – d f’(x) + E

• Where f’ denotes derivative

– Now write difference as
f(x)-g(x) = d f’(x) + E

– Neglecting higher order terms
δ = (f(x)-g(x))/f’(x)

– Note only for small d
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Gradient Constraint
(or Optical Flow Constraint)

Same approach extends naturally to 2D
I(x,y) ≈ J(x+u,y+v), u=u(x,y), v=v(x,y)

– Assume time-varying image intensity well 
approximated by first order Taylor series

J(x+u,y+v) ≈ I(x,y)+Ix(x,y)⋅u+Iy(x,y)⋅v+It

– Substituting
Ix(x,y)⋅u+Iy(x,y)⋅v ≈ -It

– Using gradient notation
∇I⋅(u,v) ≈ -It

– Linear constraint on motion (u,v) at each pixel
– Can only estimate motion in gradient direction
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Aperture Problem (Normal Flow)

Can only measure motion in direction 
normal to edge (along gradient)
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Aperture Problem (Normal Flow)

Gradient constraint defines line in (u,v) 
space 

∇I⋅(u,v) ≈ -It

Methods based solely on per pixel 
estimates don’t work well

u

v
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Combining Local Constraints

Each pixel defines linear constraint on 
possible (u,v) displacement
– For set of pixels with same displacement 

combine constraints to get estimate
– For pixels with different displacements, 

somehow identify that is case
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Translational Motion

Assume single displacement (u,v) for all 
pixels within some region of image
Over-constrained system of linear 
equations Ix(x,y)⋅u+Iy(x,y)⋅v=-It

Find least squares solution
– In matrix form: minz Dz - t

where D =

and t = [It(x1,y1) … It(xn,yn)]T

Ix(x1,y1) Iy(x1,y1)

Ix(xn,yn) Iy(xn,yn)
… …
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Least Squares Solution

z* = (DTD)-1 DTt
– Method of normal equations, can derive from 

setting partial derivatives to zero

– Inverse of 2x2 closed form

Σ Ix
2 Σ IxIy

Σ Iy
2Σ IxIy

Σ IxIt

Σ IyIt
DTD = DTt =

a b
c d

A = A-1 =  1/(ad-bc)
d -b

-c a

Where det(A)=ad-bc not (near) zero
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Translational Motion

Can estimate small translation over local 
patch around each pixel
– Fast using box sums
– Note relation to corner detection
– Poor estimate if A nearly singular
– Also poor if patch contains more than one 

underlying motion

Better handling of multiple motions
– Robust statistical techniques

Handling larger translations
– Pyramid method
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Multiple Motions

Robust statistical techniques for finding 
predominant motion in a region
Consider approach of iteratively 
reweighted least squares (IRLS)
– As illustration of robust methods

Generalize minimization problem to
minz W(Dz – t)

– Weight matrix W is diagonal
– Lessen importance of pixels that don’t match
– Iterate to find “good” weights
– Note in unweighted case W is identity matrix
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Finding Predominant Motion

Minimization generalizes in obvious way
z* = (DTW2D)-1 DTW2t

Determining good weights to use
– Start by computing least squares solution, z0

– Iteratively compute better solutions
• Compute error for each pixel based on previous 

solution zk-1 and use that to set weight per pixel

– Depends on initial solution being good enough 
to allow “bad pixels” to have largest error
• Have to measure error based on image intensity 

matches, it’s the only thing we can measure 
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Updating Weights 

To solve for zk given zk-1

– Create weights Wk = diag(w1
k … wn

k) where

– Where ri
k-1 is measure of error at i-th pixel 

with motion estimate from iteration k-1
• Compare i-th pixel value to matching pixel of 

other image (using zk-1 for correspondence)

– And c is set based on robust measure of good 
versus bad data, such as median
• Common value is 1/.6745 median(ri

k-1 )

wi
k =

1 if ri
k-1 ≤ c

c/ri
k-1 otherwise
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Weights Example

455

446

578

zk-1

101011

356

478

I J

median = 1
c ≈ 1.48

ri
k-1: 0,0,1,0,1,1,6,5,6

wi
k: 1,1,1,1,1,1,.24,.29,.24
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Global Motion Estimation

Estimate motion vectors that are 
parameterized over some region
– Each vector fits some low-order model of how 

vectors change

Affine motion model is commonly used
u(x,y) = a1+a2x+a3y
v(x,y) = a4 + a5x +a6y

Substituting into grad. constr. equation
Ix(a1+a2x+a3y) + Iy(a4 + a5x +a6y) ≈ -It

– Each pixel provides a linear constraint in six 
unknowns
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Affine Transformations

Consider points (x,y) in plane rather than 
vectors for the moment
– Linear transformation and translation

x’ = a1+a2x+a3y
y’ = a4 + a5x +a6y

– In matrix form  A(z)=Lz+b

– Maps any triangle to any triangle
• Defined by three corresponding pairs of points

a1
a4

x
y

x’
y’

a2 a3
a5 a6

= +
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Why Affine Transformations

Simple (and often inaccurate) model 
of projection
– Point (x,y,z) in space maps to (x,y) in 

image
– Orthographic or parallel projection

Somewhat reasonable model for 
telephoto lens
Yields affine transformation of plane 
for viewing “flat objects”
– 3D rotation, translation followed by 

orthographic projection and scaling
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Affine Motion Estimation

Minimization problem become that of 
estimating the parameters a1, … a6
– Rather than just two parameters u,v

Still (over-constrained) linear system but 
in more unknowns
– Again use least squares to solve

Separable into two independent 3 variable 
problems
– a1, a2, a3 reflect only u-component of motion
– a4, a5, a6 reflect only v-component of motion
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Affine Motion Equations

Again compute (DTD)-1 DTt 
– Or (re)weighted version for IRLS

Now two 3x3 problems, one for Ix and one 
for Iy, as opposed to single 2x2 problem
Problem for Ix and u motion (Iy analogous)
– T remains same, D changes

Ix1 x1 Ix1 y1 Ix1

Ixn xn Ixn yn Ixn

… ……

D =
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Multiple (Layered) Motions

Combining global parametric motion 
estimation with robust estimation
– Calculate predominant parameterized motion 

over entire image (e.g., affine)
– Corresponds to largest planar surface in scene 

under orthographic projection
• If doesn’t occupy majority of pixels robust 

estimator will probably fail to recover its motion

– Outlier pixels (low weights in IRLS) are not 
part of this surface
• Recursively try estimating their motion
• If no good estimate, then remain outliers
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Other Global Motion Models

The affine model is simple but not that 
accurate in some imaging situations
– For instance “pinhole” rather than “parallel” 

camera model for closer objects
– Non-planar surfaces
– Explicit modeling of motion parallax

Projective planar case
x’ = (h1+h2x+h3y)/(h7+h8x+h9y)
y’ = (h4+h5x+h6y)/(h7+h8x+h9y)
and u=x’-x, v=y’-y

3D models such as residual planar parallax
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Handling Larger Motions

Methods based on image gradients are 
restricted to small displacements
Two different approaches 
– Abandon gradient method and explicitly search 

over possible translations
• Computationally expensive to do for every pixel

− Consider shifts and products of image patch

• Block motion provides estimates just for certain 
pixels, used in compression (e.g., MPEG)

– Pyramid to guarantee small motions
• At top level small motion
• At each level small deviation from one above
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Coarse to Fine Motion Estimation

Estimate residual motion at each level of 
Gaussian pyramid

Original

½ res

…

1/2k res

I0,J0

I1,J1

…

Ik,Jk

Pyramid of image I Pyramid of image J
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Coarse to Fine Estimation

Compute Mk, estimate of motion at level k
– Can be local motion estimate (uk,vk)

• Vector field with motion of patch at each pixel

– Can be global motion estimate
• Parametric model (e.g., affine) of dominant 

motion for entire image

– Choose max k such that motion about one pixel

Apply Mk at level k-1 and estimate 
remaining motion at that level, iterate
– Local estimates: shift Ik by 2(uk,vk)
– Global estimates: apply inverse transform to Jk-1
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Global Motion Coarse to Fine

Compute transformation Tk mapping 
pixels of Ik to Jk

Warp image Jk-1 using Tk

– Apply inverse of Tk

– Double resolution of Tk (translations double)

Compute transformation Tk-1 mapping 
pixels of Ik to warped Jk-1

– Estimate of “residual” motion at this level
– Total estimate of motion at this level is 

composition of Tk-1 and resolution doubled Tk

• In case of translation just add them



31

Affine Mosaic Example

Coarse-to-fine affine motion 
– Pan tilt camera sweeping repeatedly over scene

Moving objects removed from background
– Outliers in motion estimate, use other scans
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SSD

An alternative to gradient based methods 
is template matching
– Treat a rectangle around each pixel as a 

“template” to find best match in other image
– Search over possible translations minimizing 

some error criterion (or maximizing quality)
– Generally use sum squared difference (SSD)

Σ Σ (I(x,y)-J(x+u,y+v))2

– Sometimes compute cross correlation
– Compute over local neighborhood
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