

CS 664 Lecture 5 Hausdorff and Chamfer Cont.

Prof. Dan Huttenlocher Fall 2003

Template Clustering

- Cluster templates into tree structures to speed matching
 - Rule out multiple templates simultaneously
 - Coarse-to-fine search where coarse granularity can rule out many templates
 - Several variants: Olson, Gavrila, Stenger
- Applies to variety of DT based matching measures
 - Chamfer, Hausdorff and robust Chamfer
- Use hierarchical clustering techniques (e.g., Edelsbrunner) offline on templates

Example Hierarchical Clusters

Larger pairwise differences higher in tree

DT and Morphological Dilation

 Dilation operation replaces each point of P with some fixed point set Q

 $- P \oplus Q = U_p U_q p+q$

- Dilation by a "disc" C^d of radius d replaces each point with a disc
 - A point is in the dilation of P by C^d exactly when the distance transform value is no more than d (for appropriate disc and distance fcn.)

$$- x \in P \oplus C^d \iff D_P(x) \leq d$$

0	1	0	0
1	1	1	0
1	1	1	0
0	1	0	0

1	1	1	0
1	1	1	1
1	1	1	1
1	1	1	0

Dilate and Correlate Matching

- Fixed degree of "smoothing" of features
 - Dilate binary feature map with specific radius disc rather than all radii as in DT
- $h_{\mathbf{k}}(\mathbf{A},\mathbf{B}) \leq \mathbf{d} \iff |\mathbf{A} \cap \mathbf{B}^{\mathbf{d}}| \geq \mathbf{k}$
 - At least k points of A contained in $\mathsf{B}^{\mathbf{d}}$
- For low dimensional transformations such as x-y-translation best way to compute
 - Dilation and binary correlation are very fast
 - For higher dimensional cases hierarchical search using DT is faster

Dot Product Formulation

- Let A and B^d be (binary) vector representations of A and B
 - E.g. standard scan line order
- Then fractional Hausdorff distance can be expressed as dot product

 $-h_{k}(A,B) \leq d \Leftrightarrow \textbf{A} \bullet \textbf{B}^{d} \geq k$

- Note that if B is perturbation of A by d then A•B is arbitrary whereas A•B^d = A•A
- Hausdorff matching using linear subspaces
 Eigenspace, PCA, etc.

Learning and Hausdorff Distance

- Learning linear half spaces
 - Dot product formulation defines linear threshold function
 - Positive if $\mathbf{A} \bullet \mathbf{B}^{\mathbf{d}} \ge k$, negative otherwise
- PAC probably approximately correct
 - Learning concepts that with high probability have low error
 - Linear programming and perceptrons can both be used to learn half spaces in PAC sense
- Consider small number of values for d (dilation parameter) and pick best

Illustration of Linear Halfspace

- Possible images define n-dimensional binary space
- Linear function separating positive and negative examples

Perceptron Algorithm

- Examples x_i each with label $y_i \in \{+,-\}$
- Set initial prediction vector v to 0
- For i=1, ..., m
 - If sign($v \cdot x_i$) \neq sign(y_i) then $v = v + y_i x_i$
- Run repeatedly until no misclassifications on m training examples
 - Or less than some threshold number but then haven't found linear separator
- Generally need many more negative than positive examples for effective training

Perceptron Algorithm

- Perceptron classifier learns concepts c of form u•c ≥ 0
 - Our problem of form $u \bullet c \ge 0$
 - Map into one higher dimensional space
 - Unknown $u = (-k\kappa ...)$
 - Concept c = (κ ...)
 - Note in practice converges most rapidly if κ proportional to length of vector (e.g., sqrt)
- Train perceptron on dilated training data
 - Positive and negative labeled examples
- Recognize by dot product of resulting c

Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000)

All Model Coefs.

Pos. Model Coefs.

Example Model (dilation d=3, picked automatically)

Detection Results

- Train on 80% test on 20% of data
 - No trials yielded any false positives
 - Average 3% missed detections, worst case 5%

Spatial Continuity

- Hausdorff and Chamfer matching do not measure degree of connectivity
 - E.g., edge chains versus isolated points
- Spatially coherent matching approach
 - Separate features into three subsets

– Far from image features

Solving for Transformation

Find T which minimizes error between transformed model and data

For each
datum

$$\epsilon(T) = -\log P(T) = \int_{j} \min_{i} d(T * M_{i}, D_{j})$$
Where:
• $d(\mathbf{x}, \mathbf{y})$ is a distance between points \mathbf{x} and \mathbf{y} .
• $T * \mathbf{x}$ applies the transformation to \mathbf{x}
e.g. $T = (\theta, t_{x}, t_{y})$ for 2D
 $T * \mathbf{x} = \begin{pmatrix} x \cos \theta + y \sin \theta + t_{x} \\ -x \sin \theta + y \cos \theta + t_{y} \end{pmatrix}$

Easy if Correspondence Known

$$\epsilon(T) = \sum_{j} \min_{i} d(T * \mathbf{M}_{i}, \mathbf{D}_{j})$$

Easy:

Given correspondences $j \leftrightarrow \phi(j)$

Can minimize

$$\sum_{j} d(T * \mathbf{M}_{\phi(j)}, \mathbf{D}_{j})$$

Don't Know Correspondence Guess and Try to Improve

 That's OK, just choose the closest point...

 Of course it's wrong, but it will get us closer

ICP: Iterated Closest Point

Problems with ICP

Slow

- Can take many iterations
- Each iteration slow due to search for correspondences
 - Fitzgibbons: improve this by using distance transform
- No convergence guarantees
 - Can get stuck in local minima
 - Not much to do about this
 - Can be improved by using robust distance measures (e.g., truncated quadratic)

