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Template Clustering

Cluster templates into tree structures to 
speed matching
– Rule out multiple templates simultaneously

• Coarse-to-fine search where coarse granularity 
can rule out many templates

• Several variants: Olson, Gavrila, Stenger

Applies to variety of DT based matching 
measures
– Chamfer, Hausdorff and robust Chamfer

Use hierarchical clustering techniques 
(e.g., Edelsbrunner) offline on templates
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Example Hierarchical Clusters

Larger pairwise differences higher in tree 
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DT and Morphological Dilation

Dilation operation replaces each point of P 
with some fixed point set Q
– P ⊕ Q = Up Uq p+q 

Dilation by a “disc” Cd of radius d replaces 
each point with a disc
– A point is in the dilation of P by Cd exactly 

when the distance transform value is no more 
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d
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Dilate and Correlate Matching

Fixed degree of “smoothing” of features
– Dilate binary feature map with specific radius 

disc rather than all radii as in DT

hk(A,B) ≤ d  ⇔ |A ∩ Bd| ≥ k
– At least k points of A contained in Bd

For low dimensional transformations such 
as x-y-translation best way to compute
– Dilation and binary correlation are very fast
– For higher dimensional cases hierarchical 

search using DT is faster 
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Dot Product Formulation

Let A and Bd be (binary) vector 
representations of A and B
– E.g. standard scan line order

Then fractional Hausdorff distance can be 
expressed as dot product
– hk(A,B) ≤ d ⇔ A•Bd ≥ k

Note that if B is perturbation of A by d 
then A•B is arbitrary whereas A•Bd= A•A
Hausdorff matching using linear subspaces
– Eigenspace, PCA, etc.
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Learning and Hausdorff Distance

Learning linear half spaces
– Dot product formulation defines linear 

threshold function
• Positive if A•Bd ≥ k, negative otherwise

PAC – probably approximately correct
– Learning concepts that with high probability 

have low error 
– Linear programming and perceptrons can both 

be used to learn half spaces in PAC sense

Consider small number of values for d 
(dilation parameter) and pick best
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Illustration of Linear Halfspace

Possible images define n-dimensional 
binary space
Linear function separating positive and 
negative examples
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Perceptron Algorithm

Examples xi each with label yi∈{+,-}
Set initial prediction vector v to 0
For i=1, …, m
– If sign(v•xi) ≠ sign(yi)

then v=v+yixi

Run repeatedly until no misclassifications 
on m training examples
– Or less than some threshold number but then 

haven’t found linear separator

Generally need many more negative than 
positive examples for effective training
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Perceptron Algorithm

Perceptron classifier learns concepts c of 
form u•c ≥ 0
– Our problem of form u•c ≥ 0
– Map into one higher dimensional space

• Unknown u = (-kκ …)
• Concept c = (κ … )
• Note in practice converges most rapidly if κ

proportional to length of vector (e.g., sqrt)

Train perceptron on dilated training data
– Positive and negative labeled examples

Recognize by dot product of resulting c 
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Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000) 

All Model
Coefs.

Pos. Model
Coefs.

Example Model (dilation d=3, picked automatically)
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Detection Results

Train on 80% test on 20% of data
– No trials yielded any false positives
– Average 3% missed detections, worst case 5%
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Spatial Continuity

Hausdorff and Chamfer matching do not 
measure degree of connectivity
– E.g., edge chains versus isolated points

Spatially coherent matching approach
– Separate features into three subsets

• Matchable
− Near image features

• Boundary
− Matchable but near

un-matchable

• Un-matchable
− Far from image features
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Solving for Transformation

For each 
datum
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Easy if Correspondence Known
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Don’t Know Correspondence
Guess and Try to Improve
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ICP: Iterated Closest Point
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Problems with ICP

Slow
– Can take many iterations
– Each iteration slow due to search for 

correspondences
• Fitzgibbons: improve this by using distance 

transform

No convergence guarantees
– Can get stuck in local minima

• Not much to do about this
• Can be improved by using robust distance 

measures (e.g., truncated quadratic)
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