
CS 664 Lecture 4
Flexible Template Matching

Prof. Dan Huttenlocher
Fall 2003

2

Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance

models for each part
– Used for human bodies, faces
– Fischler&Elschlager, 1973 – considerable

recent work

3

Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected

parts

4

Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts are connected (E) and how (C)

General case exponential time
– Consider special case in which parts translate

with respect to common origin
• E.g., useful for faces

• Parts V= {v1, … vn}

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring

5

Efficient Algorithm for Central Part

Location L=(l1, …, ln) specifies where each
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li)

• Measures degree of mismatch of appearance ai
when part vi placed at location li

– Deformation cost di(li,l1)
• Spring cost ci1 of part vi measured with respect

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)

6

Central Part Model

Spring cost cij: i=1, ideal location of lj wrt l1
– Translation oj=rj-r1

– Tj(x)=x+oj

Spring cost deformation from this ideal
– lj–Tj(l1)2

v1

v3

v2

r1

r2

r3

o2

o3

7

Consider Case of 2 Parts

minl1,l2 (m1(l1) + m2(l2)+l2–T2(l1)2)
– Where T2(l1) transforms l1 to ideal location with

respect to l2 (offset)

minl1 (m1(l1) + minl2 (m2(l2)+l2–T2(l1)2))
– But minx (f(x) + x–y2) is a distance transform

minl1 (m1(l1) + Dm2(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for

the two parts because a distance
• Just distance transform the match cost function, m

8

Several Parts wrt Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + li – Ti(l1)2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1 (m1(l1) +
Σi>1 minli (mi(li)+li–Ti(l1)2))

– i-th term of sum minimizes only over li

minl1 (m1(l1) + Σi>1 Dmi(Ti(l1)))
• Because Df(x) = miny (f(y) + y-x2)

• Using same D.T. algorithms as for binary images

9

Application to Face Detection

Five parts: eyes, tip of nose, sides of
mouth
Each part a local image patch
– Represented as response to oriented filters

– 27 filters at 3 scales and 9 orientations
– Learn coefficients from labeled examples

Parts translate with respect to central
part, tip of nose

10

Flexible Template Face Detection

Runs at several frames per second
– Compute oriented filters at 27 orientations and

scales for part cost mi

– Distance transform mi for each part other than
central one (nose tip)

– Find maximum of sum
for detected location

11

More General Flexible Templates

Efficient computation using distance
transforms for any tree-structured model
– Not limited to central reference part

Two differences from reference part case
– Relate positions of parts to one another using

tree-structured recursion
• Solve with Viterbi or forward-backward

algorithm

– Parameterization of distance transform more
complex – transformation Tij for each
connected pair of parts

12

General Form of Problem

Best location can be viewed in terms of
probability or cost (negative log prob.)
– maxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

– minL ΣV mj(lj) + ΣE dij(li,lj)
• mj(lj) – how well part vj matches image at lj
• dij(li,lj) – how well locations li,lj agree with model

(spring connecting parts vi and vj)

Difficulty of maximization/minimization
depends to large degree on form of graph

13

Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)
Can express as function for pairs Bj(li)
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children
Cj of vj

– Bj(li) = minlj (mj(lj) + dij(li,lj) + ΣCj Bc(lj))
– For leaf node no children, so last term empty
– For root node no parent, so second term

omitted

14

Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style

dynamic programming
• O(ns2) rather than O(sn) for s locations, n parts
• Still slow to be useful in practice (s in millions)

– Couple with distance transform method for
finding best pair-wise locations in linear time
• Resulting O(ns) method

Similar techniques allow sampling from
posterior distribution in O(ns) time
– Using forward-backward algorithm

15

O(ns) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization
formulas as a DT Df(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y))

– Tij maps locations to space where difference
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations
– Each can be computed in O(sD) time

• D is number of dimensions to parameter space
but is fixed (in our case D is 2 to 4)

16

Example: Recognizing People

17

Variety of Poses

18

Variety of Poses

19

Samples From Posterior

20

Model of Specific Person

21

Bayesian Formulation of Learning

Given example images I1, …, Im with
configurations L1, …, Lm

– Supervised or labeled learning problem

Obtain estimates for model Θ=(A,E,C)

Maximum likelihood (ML) estimate is
– argmaxΘ p(I1, …, Im, L1, …, Lm |Θ)

– argmaxΘ ∏kp(Ik,Lk|Θ)
• Independent examples

– argmaxΘ ∏kp(Ik|Lk,A) ∏kp(Lk|E,C)
• Independent appearance and dependencies

22

Efficiently Learning Tree Models

Estimating appearance p(Ik|Lk,A)
– ML estimation for particular type of part

• E.g., for constant color patch use Gaussian
model, computing mean color and covariance

Estimating dependencies p(Lk|E,C)
– Estimate C for pairwise locations, p(lik,ljk|cij)

• E.g., for translation compute mean offset
between parts and variation in offset

– Best tree using minimum spanning tree (MST)
algorithm
• Pairs with “smallest relative spatial variation”

23

Example: Generic Person Model

Each part represented as rectangle
– Fixed width, varying length
– Learn average and variation

• Connections approximate revolute joints

– Joint location, relative position,
orientation, foreshortening

– Estimate average and variation

Learned model (used above)
– All parameters learned

• Including “joint locations”

– Shown at ideal configuration

	CS 664 Lecture 4Flexible Template Matching
	Flexible Template Matching
	Formal Definition of Model
	Flexible Template Algorithms
	Efficient Algorithm for Central Part
	Central Part Model
	Consider Case of 2 Parts
	Several Parts wrt Reference Part
	Application to Face Detection
	Flexible Template Face Detection
	More General Flexible Templates
	General Form of Problem
	Minimizing Over Tree Structures
	Efficient Algorithm for Trees
	O(ns) Algorithm for MAP Estimate
	Example: Recognizing People
	Variety of Poses
	Variety of Poses
	Samples From Posterior
	Model of Specific Person
	Bayesian Formulation of Learning
	Efficiently Learning Tree Models
	Example: Generic Person Model

