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Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance 

models for each part
– Used for human bodies, faces
– Fischler&Elschlager, 1973 – considerable 

recent work
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Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected 

parts
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Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts are connected (E) and how (C)

General case exponential time
– Consider special case in which parts translate 

with respect to common origin
• E.g., useful for faces

• Parts V= {v1, … vn}

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring
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Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li) 

• Measures degree of mismatch of appearance ai
when part vi placed at location li

– Deformation cost di(li,l1)
• Spring cost ci1 of part vi measured with respect 

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)
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Central Part Model

Spring cost cij: i=1, ideal location of lj wrt l1
– Translation oj=rj-r1

– Tj(x)=x+oj

Spring cost deformation from this ideal
– lj–Tj(l1)2
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Consider Case of 2 Parts

minl1,l2 (m1(l1) + m2(l2)+l2–T2(l1)2)
– Where T2(l1) transforms l1 to ideal location with 

respect to l2 (offset)

minl1 (m1(l1) + minl2 (m2(l2)+l2–T2(l1)2))
– But minx (f(x) + x–y2) is a distance transform

minl1 (m1(l1) + Dm2(T2(l1))

Sequential rather than simultaneous min
– Don’t need to consider each pair of positions for 

the two parts because a distance
• Just distance transform the match cost function, m
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Several Parts wrt Reference Part

minL (Σi (mi(li) + di(li,l1)))

minL (Σi mi(li) + li – Ti(l1)2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1 (m1(l1) + 
Σi>1 minli (mi(li)+li–Ti(l1)2))

– i-th term of sum minimizes only over li

minl1 (m1(l1) + Σi>1 Dmi(Ti(l1)))
• Because Df(x) = miny (f(y) + y-x2)

• Using same D.T. algorithms as for binary images
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Application to Face Detection

Five parts: eyes, tip of nose, sides of 
mouth
Each part a local image patch
– Represented as response to oriented filters

– 27 filters at 3 scales and 9 orientations
– Learn coefficients from labeled examples

Parts translate with respect to central 
part, tip of nose
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Flexible Template Face Detection

Runs at several frames per second
– Compute oriented filters at 27 orientations and 

scales for part cost mi

– Distance transform mi for each part other than 
central one (nose tip)

– Find maximum of sum
for detected location
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More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part

Two differences from reference part case
– Relate positions of parts to one another using 

tree-structured recursion
• Solve with Viterbi or forward-backward 

algorithm

– Parameterization of distance transform more 
complex – transformation Tij for each 
connected pair of parts 
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General Form of Problem

Best location can be viewed in terms of 
probability or cost (negative log prob.)
– maxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

– minL ΣV mj(lj) + ΣE dij(li,lj)
• mj(lj) – how well part vj matches image at lj
• dij(li,lj) – how well locations li,lj agree with model

(spring connecting parts vi and vj)

Difficulty of maximization/minimization 
depends to large degree on form of graph
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Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)
Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )
– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted
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Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(ns2) rather than O(sn) for s locations, n parts
• Still slow to be useful in practice (s in millions)

– Couple with distance transform method for 
finding best pair-wise locations in linear time
• Resulting O(ns) method

Similar techniques allow sampling from 
posterior distribution in O(ns) time
– Using forward-backward algorithm



15

O(ns) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization 
formulas as a DT Df(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij maps locations to space where difference 
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations 
– Each can be computed in O(sD) time

• D is number of dimensions to parameter space 
but is fixed (in our case D is 2 to 4)
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Example: Recognizing People
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Variety of Poses
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Variety of Poses
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Samples From Posterior
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Model of Specific Person
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Bayesian Formulation of Learning

Given example images I1, …, Im with 
configurations L1, …, Lm

– Supervised or labeled learning problem

Obtain estimates for model Θ=(A,E,C)

Maximum likelihood (ML) estimate is
– argmaxΘ p(I1, …, Im, L1, …, Lm |Θ)

– argmaxΘ ∏kp(Ik,Lk|Θ) 
• Independent examples

– argmaxΘ ∏kp(Ik|Lk,A) ∏kp(Lk|E,C)
• Independent appearance and dependencies
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Efficiently Learning Tree Models

Estimating appearance p(Ik|Lk,A)
– ML estimation for particular type of part

• E.g., for constant color patch use Gaussian 
model, computing mean color and covariance

Estimating dependencies p(Lk|E,C)
– Estimate C for pairwise locations, p(lik,ljk|cij)

• E.g., for translation compute mean offset 
between parts and variation in offset

– Best tree using minimum spanning tree (MST) 
algorithm
• Pairs with “smallest relative spatial variation”
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Example: Generic Person Model

Each part represented as rectangle
– Fixed width, varying length
– Learn average and variation 

• Connections approximate revolute joints

– Joint location, relative position, 
orientation, foreshortening

– Estimate average and variation

Learned model (used above)
– All parameters learned

• Including “joint locations”

– Shown at ideal configuration
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