

CS 664 Lecture 3 Hausdorff and Chamfer Matching

Distance Transforms in Matching

- Chamfer measure asymmetric
 - Sum of distance transform values
 - "Probe" DT at locations specified by model and sum resulting values
- Hausdorff distance (and generalizations)
 - Max-min distance which can be computed efficiently using distance transform
 - Generalization to quantile of distance transform values more useful in practice
- Iterated closest point (ICP) like methods
 - Fitzgibbons

Hausdorff Distance

- Classical definition
 - Directed distance (not symmetric)
 - $h(A,B) = \max_{a \in A} \min_{b \in B} ||a-b||$
 - Distance (symmetry)
 - H(A,B) = max(h(A,B), h(B,A))
- Minimization term is simply a distance transform of B
 - $-h(A,B) = \max_{a \in A} D_B(a)$
 - Maximize over selected values of DT
- Classical distance not robust, single "bad match" dominates value

Distance Transform Definition

- Set of points, P, some distance || ||
 D_P(x) = min_{y∈P} ||x y ||
 - For each location x distance to nearest y in P
 - Think of as cones rooted at each point of P
- Commonly computed on a grid Γ using D_P(x) = min_{y∈Γ} (||x - y || + 1_P(y)) - Where 1_P(y) = 0 when y∈P, ∞ otherwise

Hausdorff Matching

Best match

 Minimum fractional Hausdorff distance over given space of transformations

Good matches

- Above some fraction (rank) and/or below some distance
- Each point in (quantized) transformation space defines a distance
 - Search over transformation space
 - Efficient branch-and-bound "pruning" to skip transformations that cannot be good

Hausdorff Matching

- Partial (or fractional) Hausdorff distance to address robustness to outliers
 - Rank rather than maximum
 - $h_{\mathbf{k}}(\mathbf{A},\mathbf{B}) = \operatorname{kth}_{\mathbf{a}\in\mathbf{A}} \operatorname{min}_{\mathbf{b}\in\mathbf{B}} \| \mathbf{a} \cdot \mathbf{b} \| = \operatorname{kth}_{\mathbf{a}\in\mathbf{A}} \mathsf{D}_{\mathbf{B}}(\mathbf{a})$
 - K-th largest value of D_B at locations given by A
 - Often specify as fraction f rather than rank
 - 0.5, median of distances; 0.75, 75th percentile

Fast Hausdorff Search

- Branch and bound hierarchical search of transformation space
- Consider 2D transformation space of translation in x and y
 - (Fractional) Hausdorff distance cannot change faster than linearly with translation
 - Similar constraints for other transformations
 - Quad-tree decomposition, compute distance for transform at center of each cell
 - If larger than cell half-width, rule out cell
 - Otherwise subdivide cell and consider children

Branch and Bound Illustration

- Guaranteed (or admissible) search heuristic
 - Bound on how good answer could be in unexplored region
 - Cannot miss an answer
 - In worst case won't rule anything Evaluate out
- In practice rule out vast majority of transformations
 - Can use even simpler tests than computing distance at cell center

Subdivide

Evaluate

Evaluate

Subdivide

DT Based Matching Measures

- Fractional Hausdorff distance
 - Kth largest value selected from DT
- Chamfer
 - Sum of values selected from DT
 - Suffers from same robustness problems as classical Hausdorff distance
 - Max intuitively worse but sum also bad
 - Robust variants
 - Trimmed: sum the K smallest distances (same as Hausdorff but sum rather than largest of K)
 - Truncated: truncate individual distances before summing

Comparing DT Based Measures

- Monte Carlo experiments with known object location and synthetic clutter
 - Matching edge locations
- Varying percent clutter
 - Probability of edge pixel 2.5-15%
- Varying occlusion

CORNELI

- Single missing interval, 10-25% of boundary
- Search over location, scale, orientation

ROC Curves

- Probability of false alarm vs. detection
 - 10% and 15% occlusion with 5% clutter
 - Chamfer is lowest, Hausdorff (f=.8) is highest
 - Chamfer truncated distance better than trimmed

Edge Orientation Information

- Match edge orientation as well as location
 - Edge normals or gradient direction
- Increases detection performance and speeds up matching
 - Better able to discriminate object from clutter
 - Better able to eliminate cells in branch and bound search
- Distance in 3D feature space $[p_x, p_y, \alpha p_o]$
 - $\boldsymbol{\alpha}$ weights orientation versus location
 - $\operatorname{kth}_{a \in A} \operatorname{min}_{b \in B} \| a b \| = \operatorname{kth}_{a \in A} D_{B}(a)$

ROC's for Oriented Edge Pixels

- Vast improvement for moderate clutter
 - Images with 5% randomly generated contours
 - Good for 20-25% occlusion rather than 2-5%

Observations on DT Based Matching

- Fast compared to explicitly considering pairs of model and data features
 - Hierarchical search over transformation space
- Important to use robust distance
 Straight Chamfer very sensitive to outliers
 - Truncated DT can be computed fast
- No reason to use approximate DT
 - Fast exact method for L_2^2 or truncated L_2^2
- For edge features use orientation too
 - Comparing normals or using multiple edge maps

