
CS 664 Lecture 2
Distance Transforms

Prof. Dan Huttenlocher
Fall 2003

2

Distance Transforms

Map of distance to nearest features
– Computed from map of feature locations

• E.g., edge detector output

Powerful and widely applicable
– Can think of as “smoothing in feature space”
– Related to morphological dilation operation
– Often preferable to explicitly searching for

correspondences of features

Efficiently computable using DP
– Time linear in number of pixels, fast in practice

3

Distance Transform Definition

Set of points, P, some distance •
DP(x) = miny∈P x - y

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (x - y + 1P(y))

– Where 1P(y) = 0 when y∈P, ∞ otherwise

0
0
11

2 1 2

1 1
2 1 2

3
2
2
3

4

DP for L1 Distance Transform

1D case
– Two passes:

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either

previous closest point or current point
• Analogous moving right-to-left for closest point

on right

– Can keep track of closest point as well as
distance to it
• Will illustrate distance; point follows easily

5

L1Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(for simplicity just distance)
1. Initialize: For all j

D[j] ← 1P[j]
2. Forward: For j from 1 up to n-1

D[j] ← min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0

D[j] ← min(D[j],D[j+1]+1)

1 0

0 1

∞ 0 ∞ 0 ∞ ∞ ∞ 0 ∞

∞ 0 1 0 1 2 3 0 1
1 0 1 0 1 2 1 0 1

6

L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Fwd pass finds closest above and to left
• Bwd pass finds closest below and to right

Note nothing depends on 0,∞ form of
initialization
– Can “distance transform” arbitrary array

0
1

1
-

0
0

∞∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0
1∞

∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0
11

2 1 2

1 1
2 1 2

3
2
2
3

0
0
1∞

∞ ∞ ∞

∞ 1
∞ 1 2

∞
2
2
3

-
10

1

7

L2 Distance Transform

Approximations using fixed size masks
– Analogous to 1D case
– Simple to understand but not best methods

Exact linear time method for L2
2

– Can compute sqrt (but usually not needed)
– Fast in practice, easy to implement
– Harder to understand than L1 algorithm
– Uses important general algorithmic technique

of amortized analysis

1D case – lower envelope of quadratics

8

1D L2
2 Distance Transform

Single left-to-right pass
– Adding k-th quadratic to lower envelope (LE)

of first k-1 quadratics
– Quadratics differ only in location of their base

Concerned about intersection of k-th
quadratic and LE of first k-1
– Consider only rightmost quadratic visible in LE
– Keep track of locations of bases of visible
quadratics (VQ), ordered left-to-right

– Keep track of visible intersections of adjacent
quadratics (VI), ordered left-to-right

9

Adding k-th Quadratic to LE

Case 1: intersection of k and rightmost VQ
(RVQ) outside range, k not visible on LE
Case 2: intersection of k and RVQ to right
of rightmost VI (RVI), k added to right
Case 3: intersection of k and RVQ to left
of RVI, k covers at least RVQ, remove RVQ
and try adding again

10

Running Time of 1D Algorithm

Traditional analysis would consider time
for each case, multiplied by n iterations
– Cases 1 and 2 O(1), but case 3 ??

Amortized analysis: charge work done by
algorithm to “events” that can be bounded
– Three event types

• K-th quadratic initially excluded
• K-th quadratic added
• K-th quadratic removed

– Each event happens at most once per
quadratic (note once removed, never again)

– Algorithm does constant work per event

11

2D Algorithm

Horizontal pass of 1D algorithm
– Computes minimum x2 distance

Vertical pass of 1D algorithm on result of
horizontal pass
– Computes minimum x2+y2 distance
– Note algorithm applies to any input (quadratics

can be at any location)

Actual code straightforward and fast
– Each pass maintains arrays of indexes of

visible parabolas and the intersections
– Fills in distance values at each pixel after

determining which parabolas visible

12

Horizontal Pass of 2D L2
2 DT

for (y = 0; y < height; y++) {
k = 0; /* Number of boundaries between parabolas */
z[0] = 0; /* Indexes of locations of boundaries */
z[1] = width; /* No current boundaries (first at end of array) */
v[0] = 0; /* Indexes of locations of visible parabola bases */
for (x = 1; x < width; x++) {

do {
/* intersection of this parabola with rightmost visible parabola */
s = ((imRef(im, x, y) + x*x) - (imRef(im, v[k], y) + v[k]*v[k])) /

(2 * (x - v[k]));
sp = ceil(s);
/* case one: intersection off end, this parabola not visible */
if (sp >= width)

break;
/* case two: intersection is rightmost, add it to end*/
if (sp > z[k]) {

z[k+1] = sp; z[k+2] = width; v[k+1] = x; k++;
break; }

/* case three: intersection is not rightmost, hides rightmost
parabola and perhaps others, remove rightmost and try again */

if (k == 0) {
v[0] = x; break;

} else {
z[k] = width; k--; }

} while (1);
}

13

DT Values From Intersections

/* get value of input image at each parabola base */
for (x = 0; x <= k; x++) {

vref[x] = imRef(im, v[x], y);
}
k = 0;
/* iterate over pixels, calculating value for closest parabola */
for (x = 0; x < width; x++) {

if (x == z[k+1])
k++;
imRef(im, x, y) = vref[k] + (v[k]-x)*(v[k]-x);

}

No reason to approximate L2 distance!
Code available at
www.cs.cornell.edu/~dph/matchalgs/

14

DT and Morphological Dilation

Dilation operation replaces each point of P
with some fixed point set Q
– P ⊕ Q = Up Uq p+q

Dilation by a “disc” Cd of radius d replaces
each point with a disc
– A point is in the dilation of P by Cd exactly

when the distance transform value is no more
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d

0
0
11

2 1 2

1 1
2 1 2

3
2
2
3

1
1
11

0 1 0

1 1
0 1 0

0
0
0
0

1
1
11

1 1 1

1 1
1 1 1

0
1
1
0

15

Generalizations of DT

Combination distance functions
– Robust “truncated quadratic” distance

• Quadratic for small distances, linear for larger
• Simply minimum of (weighted) quadratic and

linear distance transforms

DT of arbitrary functions: minyx-y+f(y)
– Exact same algorithms apply
– Combination of cost function f(y) at each

location and distance function
• Useful for certain energy minimization problems

16

Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and
sum resulting values

Hausdorff distance (and generalizations)
– Max-min distance which can be computed

efficiently using distance transform
– Generalization to quantile of distance

transform values more useful in practice

Iterated closest point (ICP) like methods
– Fitzgibbons

	CS 664 Lecture 2Distance Transforms
	Distance Transforms
	Distance Transform Definition
	DP for L1 Distance Transform
	L1Distance Transform Algorithm
	L1 Distance Transform
	L2 Distance Transform
	1D L22 Distance Transform
	Adding k-th Quadratic to LE
	Running Time of 1D Algorithm
	2D Algorithm
	Horizontal Pass of 2D L22 DT
	DT Values From Intersections
	DT and Morphological Dilation
	Generalizations of DT
	Distance Transforms in Matching

