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Distance Transforms

Map of distance to nearest features
– Computed from map of feature locations

• E.g., edge detector output

Powerful and widely applicable
– Can think of as “smoothing in feature space”
– Related to morphological dilation operation
– Often preferable to explicitly searching for 

correspondences of features

Efficiently computable using DP
– Time linear in number of pixels, fast in practice
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Distance Transform Definition

Set of points, P, some distance •
DP(x) = miny∈P x - y

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (x - y + 1P(y) )

– Where 1P(y) = 0 when y∈P, ∞ otherwise
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DP for L1 Distance Transform

1D case
– Two passes: 

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either 

previous closest point or current point
• Analogous moving right-to-left for closest point 

on right

– Can keep track of closest point as well as 
distance to it
• Will illustrate distance; point follows easily
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L1Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(for simplicity just distance)
1. Initialize: For all j

D[j] ← 1P[j]
2. Forward: For j from 1 up to n-1

D[j] ← min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0

D[j] ← min(D[j],D[j+1]+1)
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L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Fwd pass finds closest above and to left
• Bwd pass finds closest below and to right

Note nothing depends on 0,∞ form of 
initialization
– Can “distance transform” arbitrary array
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L2 Distance Transform 

Approximations using fixed size masks
– Analogous to 1D case
– Simple to understand but not best methods

Exact linear time method for L2
2

– Can compute sqrt (but usually not needed)
– Fast in practice, easy to implement
– Harder to understand than L1 algorithm
– Uses important general algorithmic technique 

of amortized analysis

1D case – lower envelope of quadratics
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1D L2
2 Distance Transform

Single left-to-right pass
– Adding k-th quadratic to lower envelope (LE) 

of first k-1 quadratics
– Quadratics differ only in location of their base

Concerned about intersection of k-th
quadratic and LE of first k-1
– Consider only rightmost quadratic visible in LE
– Keep track of locations of bases of visible
quadratics (VQ), ordered left-to-right

– Keep track of visible intersections of adjacent 
quadratics (VI), ordered left-to-right
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Adding k-th Quadratic to LE

Case 1: intersection of k and rightmost VQ 
(RVQ) outside range, k not visible on LE
Case 2: intersection of k and RVQ to right 
of rightmost VI (RVI), k added to right
Case 3: intersection of k and RVQ to left 
of RVI, k covers at least RVQ, remove RVQ 
and try adding again
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Running Time of 1D Algorithm

Traditional analysis would consider time 
for each case, multiplied by n iterations
– Cases 1 and 2 O(1), but case 3 ??

Amortized analysis: charge work done by 
algorithm to “events” that can be bounded
– Three event types

• K-th quadratic initially excluded
• K-th quadratic added
• K-th quadratic removed

– Each event happens at most once per 
quadratic (note once removed, never again)

– Algorithm does constant work per event
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2D Algorithm

Horizontal pass of 1D algorithm
– Computes minimum x2 distance

Vertical pass of 1D algorithm on result of 
horizontal pass
– Computes minimum x2+y2 distance
– Note algorithm applies to any input (quadratics 

can be at any location)

Actual code straightforward and fast
– Each pass maintains arrays of indexes of 

visible parabolas and the intersections
– Fills in distance values at each pixel after 

determining which parabolas visible
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Horizontal Pass of 2D L2
2 DT

for (y = 0; y < height; y++) {
k = 0;  /* Number of boundaries between parabolas */
z[0] = 0;   /* Indexes of locations of boundaries */
z[1] = width;  /* No current boundaries (first at end of array) */
v[0] = 0;     /* Indexes of locations of visible parabola bases */
for (x = 1; x < width; x++) {

do {
/* intersection of this parabola with rightmost visible parabola */
s = ((imRef(im, x, y) + x*x) - (imRef(im, v[k], y) + v[k]*v[k])) /

(2 * (x - v[k]));
sp = ceil(s);
/* case one: intersection off end, this parabola not visible */
if (sp >= width)

break;
/* case two: intersection is rightmost, add it to end*/
if (sp > z[k]) {

z[k+1] = sp; z[k+2] = width; v[k+1] = x; k++;
break;  }

/* case three: intersection is not rightmost, hides rightmost
parabola and perhaps others, remove rightmost and try again */

if (k == 0) {
v[0] = x; break;

} else {
z[k] = width; k--; }

} while (1);
}
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DT Values From Intersections

/* get value of input image at each parabola base */
for (x = 0; x <= k; x++) {

vref[x] = imRef(im, v[x], y);
}
k = 0;
/* iterate over pixels, calculating value for closest parabola */
for (x = 0; x < width; x++) {

if (x == z[k+1])
k++;
imRef(im, x, y) = vref[k] + (v[k]-x)*(v[k]-x);

}

No reason to approximate L2 distance!
Code available at 
www.cs.cornell.edu/~dph/matchalgs/



14

DT and Morphological Dilation

Dilation operation replaces each point of P 
with some fixed point set Q
– P ⊕ Q = Up Uq p+q 

Dilation by a “disc” Cd of radius d replaces 
each point with a disc
– A point is in the dilation of P by Cd exactly 

when the distance transform value is no more 
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d
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Generalizations of DT

Combination distance functions
– Robust “truncated quadratic” distance

• Quadratic for small distances, linear for larger
• Simply minimum of (weighted) quadratic and 

linear distance transforms

DT of arbitrary functions: minyx-y+f(y) 
– Exact same algorithms apply
– Combination of cost function f(y) at each 

location and distance function
• Useful for certain energy minimization problems
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Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and 
sum resulting values

Hausdorff distance (and generalizations)
– Max-min distance which can be computed 

efficiently using distance transform
– Generalization to quantile of distance 

transform values more useful in practice

Iterated closest point (ICP) like methods
– Fitzgibbons
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