CS 664 Slides \#11 Image Segmentation

Prof. Dan Huttenlocher Fall 2003

Image Segmentation

- Find regions of image that are "coherent"
- "Dual" of edge detection
- Regions vs. boundaries
- Related to clustering problems
- Early work in image processing and clustering
- Many approaches
- Graph-based
- Cuts, spanning trees, MRF methods
- Feature space clustering
- Mean shift

A Motivating Example

- Image segmentation plays a powerful role in human visual perception
- Independent of particular objects or recognition

This image has three perceptually distinct regions

Graph Based Formulation

- $G=(V, E)$ with vertices corresponding to pixels and edges connecting neighboring pixels

4-connected or 8-conneted

- Weight of edge is magnitude of intensity difference between connected pixels
- A segmentation, S, is a partition of V such that each $C \in S$ is connected

Important Characteristics

- Efficiency
- Run in time essentially linear in the number of image pixels
- With low constant factors
- E.g., compared to edge detection
- Understandable output
- Way to describe what algorithm does
- E.g., Canny edge operator and step edge plus noise
- Not purely local
- Perceptually important

Motivating Example

- Purely local criteria are inadequate
- Difference along border between A and B is less than differences within C
- Criteria based on piecewise constant regions are
 inadequate (e.g., Potts MRF)
- Will arbitrarily split A into subparts

MST Based Approaches

- Graph-based representation
- Nodes corresponding to pixels, edge weights are intensity difference between connected pixels
- Compute minimum spanning tree (MST)
- Cheapest way to connect all pixels into single component or "region"
- Selection criterion
- Remove certain MST edges to form components
- Fixed threshold
- Threshold based on neighborhood
- How to find neighborhood

Component Measure

- Instead of constructing MST based on just the edge weights
- Consider properties of two components being merged when adding an edge
- Recall Kruskal's MST algorithm adds edges from lowest to highest weight
- Only when connect distinct components
- Apply criterion based on components to further filter added edges
- Form of criterion limited by considering edges weight ordered

Measuring Component Difference

- Let internal difference of a component be maximum edge weight in its MST

$$
\operatorname{Int}(C)=\max _{e \in M S T(C, E)} w(e)
$$

- Smallest weight such that all pixels of C are connected by edges of at most that weight
- Let difference between two components be minimum edge weight connecting them

$$
\operatorname{Dif}\left(C_{1}, C_{2}\right)=\min _{v_{i} \in C_{1}, v_{j} \in C_{2}} w\left(\left(v_{i}, v_{j}\right)\right)
$$

- Note: infinite if there is no such edge

Region Comparison Function

- Two components judged to be distinct when $\operatorname{Dif(}\left(C_{1}, C_{2}\right)$ large relative to $\operatorname{Int}\left(C_{1}\right)$ or $\operatorname{Int}\left(C_{2}\right)$ - Require that it be sufficiently larger
- Controlled by (non-negative) threshold function τ
- Region comparison function $g\left(C_{1}, C_{2}\right)$ is true when regions should be distinct, i.e., when

$$
\operatorname{Dif}\left(C_{1}, C_{2}\right)>\operatorname{MInt}\left(C_{1}, C_{2}\right)
$$

where $\operatorname{MInt}\left(C_{1}, C_{2}\right)$

$$
=\min \left(\operatorname{Int}\left(C_{1}\right)+\tau\left(C_{1}\right), \operatorname{Int}\left(C_{2}\right)+\tau\left(C_{2}\right)\right)
$$

About the Threshold Function τ

- Intuitively Int(C) estimates local differences over component
- Small components give underestimate of local difference - neighboring pixels tend to be similar
- Thus τ should be large in this case
- Use a function inversely proportional to component size $\tau(C)=k /|C|$
- k is a parameter of the method that captures "scale of observation"
- Larger k means prefer larger components
- Other functions possible, e.g., based on shape

The Algorithm

0 . Sort edges of E into $\left(e_{1}, \ldots, e_{n}\right)$, in order of nondecreasing edge weight

1. Initialize S with one component per pixel
2. For each e_{q} in $\left(e_{1}, \ldots, e_{n}\right)$ do step 3
3. If weight of e_{q} small relative to internal difference of components it connects then merge components, otherwise do nothing

$$
\text { I.e., if } w\left(e_{q}\right) \leq \operatorname{MInt}\left(C_{i}, C_{j}\right) \text {, where } C_{i}, C_{j} \in S
$$ are distinct components connected by e_{q}, then update S by merging C_{i} and C_{j}

Regions Found by the Algorithm

A

B

C

- Three main regions plus a few small ones
- Why the algorithm stops growing these
- Weight of edges between A and B large wrt max weight MST edges of A and of B
- Weight of edges between B and C large wrt max weight MST edge of B (but not of C)

Criteria for a Good Segmentation

- Some predicate for comparing two regions
- Intuitively, evaluates whether there is evidence for a boundary between two regions
- A segmentation is too fine when predicate says no evidence for a boundary
- Some pair of neighboring regions where predicate false
- A segmentation is too coarse when there is some refinement that is not too fine
- A refinement is obtained by splitting one or more regions of a segmentation

Good Segmentations and the Example

- Splitting A, B or C would be too fine
- Not splitting A from B or B from C would be
 too coarse

Other Algorithms and the Criteria

- Piecewise constant regions (or compact clusters in a color-based feature space)
- Too fine: arbitrarily split ramp in A into pieces
- Breaking high cost edges in the MST of a graph corresponding to the image
- Both: merge A with B or split C into multiple pieces

Properties of the Algorithm

- It is fast, $O(n \log n)$ for sorting in step 0 and $O(n \alpha(n))$ for the remaining steps
- Using union-find with path compression to represent the partition, S
- It produces good segmentations
- Neither too coarse nor too fine according to the above definitions
- Despite being a greedy algorithm
- It yields the same results regardless of the order that equal-weight edges are considered
- Proof a bit involved, won't discuss here

Components "Freeze"

- When two components do not merge, one will be a component of the final segmentation
- A merge decision is made for an edge e_{q} and the two components that it connects $C_{i}{ }^{\prime} C_{j}$
- Say the merge does not occur because $w\left(e_{q}\right)>$ $\operatorname{Int}\left(C_{i}\right)+\tau\left(C_{i}\right)$
- Then any subsequent merge involving C_{i} will also not occur, because edges are considered in nondecreasing weight order
- Analogous for C_{j}, so when a merge fails one or both of the components involved "freeze"

Segmentation Not Too Fine

- Follows readily from fact that components "freeze"
- An edge between two components in final segmentation implies the algorithm decided not to merge when considering this edge
- Component that caused this decision is frozen, so appears in the final segmentation
- Thus the decision that was true when the edge was considered remains true for the final segmentation

Segmentation Not Too Coarse

- Means any proper refinement is too fine
- Suppose was a proper refinement, T, of the final segmentation, S, that is not too fine
- Consider the minimum weight edge, e, that is between two components A, B of T but is within a single component C of S

Sketch Continued

- All edges in MST of either A or B have weights smaller than $w(e)$, say it is A
- Definition of not too fine, and predicate
- Thus algorithm creates A before considering e
- Because all edges on boundary of A, but internal to C, have weight larger than $w(e)$
- Since T not too fine, the decision criterion implies the algorithm would freeze A when considering e

Closely Related Problems Hard

- What appears to be a slight change
- Make Dif be quantile instead of min

$$
\text { k-th } v_{v_{i} \in C_{1},} v_{j} \in C_{2} w\left(\left(v_{i}, v_{j}\right)\right)
$$

- Desirable for addressing "cheap path" problem of merging based on one low cost edge
- Makes problem NP hard
- Reduction from min ratio cut
- Ratio of "capacity" to "demand" between nodes
- Other methods that we will see are also NP hard and approximated in various ways

Some Implementation Issues

- Smooth images slightly before processing
- Remove high variation due to digitization artifacts
- Sorting is dominant time in processing
- For known edge distribution can in principle do better by binning
- Treat color images as three separate images
- Components of segmentation are "intersection" of components from each of the three color planes
- Motivation: significant change in any color channel should result in a region boundary

Some Example Segmentations

$\mathrm{k}=300$
320 components larger than 10

k=200
323 components larger than 10

Some Shortcomings

- Smoothing can introduce problems
- "Extra regions" at boundaries
- Creates "ramps" between regions, thus merge

Simple Object Examples

Monochrome Example

- Components locally connected (grid graph)
- Sometimes not desirable

Clustering: Non-Local Components

- Points in d-dimensional space
- Vertex for each point, edge weights based on distance in this space
- Intuitively, Int measures "density" of clusters
- Smallest dilation radius such that all points in the cluster are connected
- When clusters separated by nearly same distance as their "densities" then segmentation is too fine
- For efficiency use a graph with $O(|V|)$ edges
- Use Mount's approximate nearest neighbor algorithm to find nearest neighbors

Clustering Gaussian Point Data

Note: Gaussian not constant density

Graph connecting four nearest neighbors to each vertex
$k=1$

3 largest clusters, 75\% classified

5 largest clusters, 95\% classified

Clustering for Image Segmentation

- Treat each pixel as a point in a feature space
- More than just local intensity or color, incorporate spatial, texture, motion or other differences
- Now regions of segmentation need not be connected in image
- Practical issue, relatively expensive to find nearest neighbors for graph
- Can use neighbors in some fixed distance, but restricts regions that can be found
- In examples here use 4 nearest neighbors

Example Clustering of Image Data

- Segmentation using difference in R,G,B values and in position
- Distance of 5 pixels same as 1 intensity unit

Non-Local Component

About Clustering for Image Data

- Meaningful regions in image are not necessarily compact in feature space
- Cheap path in feature space not always apparent in image

Additional Example

- High variability in illuminated tower pixels

Beyond Grid Graphs

- Image segmentation methods using affinity (or cost) matrices
- For each pair of vertices $\mathrm{v}_{\mathbf{i}}, \mathrm{v}_{\mathbf{j}}$ an associated weight w_{ij}
- Affinity if larger when vertices more related
- Cost if larger when vertices less related
- Matrix $\mathrm{W}=\left[\mathrm{W}_{\mathrm{ij}}\right]$ of affinities or costs
- W is large, avoid constructing explicitly
- For images affinities tend to be near zero except for pixels that are nearby
- E.g., decrease exponentially with distance
- W is sparse

Cut Based Techniques

- For costs, natural to consider minimum cost cuts
- Removing edges with smallest total cost, that cut graph in two parts
- Graph only has non-infinite-weight edges
- For segmentation, recursively cut resulting components
- Question of when to stop
- Problem is that cuts tend to split off small components
- Few edges

Normalized Cuts

- A number of normalization criteria have been proposed
- One that is commonly used

$$
\operatorname{Ncut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(A, V)}+\frac{\operatorname{cut}(A, B)}{\operatorname{assoc}(B, V)}
$$

- Where $\operatorname{cut}(A, B)$ is standard definition

$$
\sum_{i \in A, j \in B} W_{i j}
$$

- And $\operatorname{assoc}(\mathrm{A}, \mathrm{V})=\sum_{\mathrm{j}} \sum_{\mathrm{i} \in \mathrm{A}} \mathrm{W}_{\mathrm{ij}}$

Computing Normalized Cuts

- Has been shown this is equivalent to an integer programming problem, minimize

$$
\frac{y^{\top}(D-W) y}{y^{\top} D y}
$$

- Subject to the constraint that $y_{i} \in\{1, b\}$ and $y^{\top} D 1=0$
- Where 1 vector of all 1's
- W is the affinity matrix
- D is the degree matrix (diagonal)

$$
D(\mathrm{i}, \mathrm{i})=\sum_{\mathrm{j}} \mathrm{w}_{\mathrm{ij}}
$$

Approximating Normalized Cuts

- Integer programming problem NP hard
- Instead simply solve continuous (real-valued) version
- This corresponds to finding second smallest eigenvector of

$$
(D-W) y_{i}=\lambda_{i} D y_{i}
$$

- Widely used method
- Works well in practice
- Large eigenvector problem, but sparse matrices
- Often resolution reduce images, e.g, 100x100
- But no longer clearly related to cut problem

Normalized Cut Examples

Another Look at the Problem

- Consider eigen analysis of affinity matrix

$$
\mathrm{W}=\left[\mathrm{W}_{\mathrm{ij}}\right]
$$

- Note W is symmetric; for images $\mathrm{w}_{\mathbf{i j}}=\mathrm{w}_{\mathbf{j i}}$
- W also essentially block diagonal
- With suitable rearrangement of rows/cols so that vertices with higher affinity have nearer indices
- Entries far from diagonal are small (though not quite zero)
- Eigenvectors of W
- Recall for real, symmetric matrix forms an orthogonal basis
- Axes of decreasing "importance"

Structure of W

- Eigenvectors of block diagonal matrix consist of eigenvectors of the blocks
- Padded with zeroes
- Note rearrangement so that clusters lie near diagonal only conceptual
- Eigenvectors of permuted matrix are permutation of original eigenvectors
- Can think of eigenvectors as being associated with high affinity "clusters"
- Eigenvectors with large eigenvalues
- Approximately the case

Structure of W

- Consider case of point set where affinities

$$
w_{i j}=\exp \left(-\left(y_{i}-y_{j}\right)^{2} / \sigma^{2}\right)
$$

- With two clusters
- Points indexed to respect clusters for clarity
- Block diagonal form of W
- Within cluster affinities A, B for clusters
- Between cluster affinity C

$$
\begin{array}{|r|}
\because \because \\
\\
\because \because
\end{array} \quad W=\left(\begin{array}{ll}
A & C \\
C^{\top} & B
\end{array}\right)
$$

First Eigenvector of W

- Recall, vectors x_{i} satisfying $W x_{i}=\lambda_{i} x_{i}$
- Consider ordered by eigenvalues λ_{i}
- First eigenvector x_{1} has largest eigenvalue λ_{1}
- Elements of first eigenvector serve as "index vector"
- Selecting elements of highest affinity cluster

Points in plane

Elements of \mathbf{x}_{1}

Clustering

- First eigenvector of W has been suggested as clustering or segmentation criterion
- For selecting most significant segment
- Then recursively segment remainder
- Problematic when similar affinity clusters (regions)

Understanding Normalized Cuts

- Intractable discrete graph problem used to motivate continuous (real valued) problem
- Find second smallest "generalized eigenvector"

$$
(D-W) x_{\mathbf{i}}=\lambda_{\mathbf{i}} D \mathbf{x}_{\mathbf{i}}
$$

- Where D is (diagonal) degree matrix $\mathrm{d}_{\mathbf{i i}}=\sum_{\mathbf{j}} \mathrm{w}_{\mathbf{i j}}$
- Can be viewed in terms of first two eigenvectors of normalized affinity matrix
- Let $N=D^{-1 / 2} W^{-1 / 2}$
- Note $\mathrm{n}_{\mathrm{ij}}=\mathrm{w}_{\mathrm{ij}} /\left(\sqrt{\mathrm{d}_{\mathrm{ij}}} \sqrt{\mathrm{d}_{\mathrm{jj}}}\right)$
- Affinity normalized by degree of the two nodes

Normalized Affinities

- Can be shown that
- If x is an eigenvector of N with eigenvalue λ then $D^{-1 / 2} x$ is a generalized eigenvector of W with eigenvalue $1-\lambda$
- The vector $D^{\mathbf{- 1 / 2}} \mathbf{1}$ is an eigenvector of N with eigenvalue 1
- It follows that
- Second smallest generalized eigenvector of W is ratio of first two eigenvectors of N
- So ncut uses normalized affinity matrix N and first two eigenvectors rather than affinity matrix W and first eigenvector

Contrasting W and N

- Three simple point clustering examples
- W, first eigenvector of W, ratio of first two eigenvectors of N (generalized eigenvector of W)

Image Segmentation

- Considering W and N for segmentation
- Affinity a negative exponential based on distance in x, y, b space
- Eigenvectors of N more correlated with regions

Using More Eigenvectors

- Based on k largest eigenvectors
- Construct matrix Q such that (ideally) $q_{i j}=1$ if i and j in same cluster, 0 otherwise
- Let V be matrix whose columns are first k eigenvectors of W
- Normalize rows of V to have unit Euclidean norm
- Ideally each node (row) in one cluster (col)
- Let $\mathrm{Q}=\mathrm{VV}^{\top}$
- Each entry product of two unit vectors

Normalization and k Eigenvectors

- Normalized affinities help correct for variations in overall degree of affinity
- So compute Q for N instead of W
- Contrasting Q with ratio of first two eigenvectors of N (ncut criterion)
- More clearly selects most significant region
- Using k=6 eigenvectors
- Row of Q matrix vs. ratio of eigenvectors of N

Spectral Methods

- Eigenvectors of affinity and normalized affinity matrices
- Widely used outside computer vision for graph-based clustering
- Link structure of web pages, citation structure of scientific papers
- Often directed rather than undirected graphs

Mean Shift

- Used both for segmentation and for edge preserving filtering
- Operates on collection of points $X=\left\{x_{1}, \ldots, x_{n}\right\}$ in R^{d}
- Replace each point with value derived from mean shift procedure
- Searches for a local density maximum by repeatedly shifting a d-dimensional hypersphere of fixed radius h
- Differs from most hyper-sphere based clustering in that no fixed number of clusters

Mean Shift Procedure

- For given point $x \in X$ let y_{1}, \ldots, y_{T} denote successive locations of that point

$$
\begin{aligned}
& y_{1}=x \\
& y_{k+1}=1 /\left|S\left(y_{k}\right)\right| \sum_{x \in S(y k)} x
\end{aligned}
$$

- Where $S\left(y_{k}\right)$ is the subset of X contained in a hyper-sphere of radius h centered at y_{k}
- The radius h is a fixed parameter of the method
- For a point set X, the mean shift procedure is applied separately to all the points

Illustration of Mean Shift

- Path of successive values of y_{k} for given starting point x

- Can be shown that converges to local density maximum

Mean Shift Image Filtering

- Map each image pixel to point in u, v, b space

$$
x_{i}=\left(u_{i}, v_{i}, b_{i} / \sigma\right)
$$

- Analogous for color images, with three intensity values instead of one
- Scale factor σ normalizes intensity vs. spatial dimensions
- Perform mean shift for each point
- Let $Y_{i}=\left(U_{i}, V i, B_{i}\right)$ denote mean shifted value
- Assign result $z_{i}=\left(u_{i}, v_{i}, B_{i}\right)$
- Original spatial coords, mean shifted intensity

Mean Shift Example

Edge Preserving Filtering

- Mean shift tends to preserve edges
- Edges are where intensity is changing rapidly
- Rapid changes in intensity will result in lower density regions in joint spatialintensity space
- Mean shift finds local density maxima

Mean Shift Clustering

- Run mean shift procedure for each point
- Cluster resulting convergence points that closer than some small constant
- Assign each point label of its cluster
- Analogous to filtering, but with added step of merging cluster that are nearby in the joint spatial-intensity domain

About Mean Shift

- Convergence to local density maximum
- Where "local" determined by sphere radius
- Consider simple point set

- Over wide range of sphere radii end up with two clusters
- Relationship to MST

