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Image Segmentation

Find regions of image that are “coherent”
“Dual” of edge detection
– Regions vs. boundaries

Related to clustering problems
– Early work in image processing and clustering

Many approaches
– Graph-based

• Cuts, spanning trees, MRF methods

– Feature space clustering
– Mean shift
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A Motivating Example
Image segmentation plays a powerful role 
in human visual perception
– Independent of particular objects or 

recognition

This image has three 
perceptually distinct regions
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Graph Based Formulation

G=(V,E) with vertices corresponding to pixels 
and edges connecting neighboring pixels

Weight of edge is magnitude of intensity 
difference between connected pixels
A segmentation, S, is a partition of V such 
that each C∈S is connected

4-connected or 8-conneted
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Important Characteristics

Efficiency
– Run in time essentially linear in the number of 

image pixels 
• With low constant factors
• E.g., compared to edge detection

Understandable output 
– Way to describe what algorithm does

• E.g., Canny edge operator and step edge plus noise

Not purely local
– Perceptually important
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Motivating Example

Purely local criteria are 
inadequate 
– Difference along border between 

A and B is less than differences 
within C

Criteria based on piecewise 
constant regions are 
inadequate (e.g., Potts MRF)
– Will arbitrarily split A into 

subparts

B CA
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MST Based Approaches

Graph-based representation
– Nodes corresponding to pixels, edge weights are 

intensity difference between connected pixels
Compute minimum spanning tree (MST)
– Cheapest way to connect all pixels into single 

component or “region”
Selection criterion
– Remove certain MST edges to form components

• Fixed threshold
• Threshold based on neighborhood

− How to find neighborhood
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Component Measure

Instead of constructing MST based on just 
the edge weights
– Consider properties of two components being 

merged when adding an edge

Recall Kruskal’s MST algorithm adds edges 
from lowest to highest weight
– Only when connect distinct components

Apply criterion based on components to 
further filter added edges
– Form of criterion limited by considering edges 

weight ordered
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Measuring Component Difference

Let internal difference of a component be 
maximum edge weight in its MST

Int(C) = max e∈MST(C,E) w(e)
– Smallest weight such that all pixels of C are 

connected by edges of at most that weight  

Let difference between two components be 
minimum edge weight connecting them

Dif(C1,C2) = min vi∈C1, vj∈C2
w((vi,vj))

– Note: infinite if there is no such edge
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Region Comparison Function

Two components judged to be distinct when 
Dif(C1,C2) large relative to Int(C1) or Int(C2)
– Require that it be sufficiently larger

– Controlled by (non-negative) threshold function τ

Region comparison function g(C1,C2) is true 
when regions should be distinct, i.e., when

Dif(C1,C2) > MInt(C1,C2)
where MInt(C1,C2) 

=  min(Int(C1)+τ(C1), Int(C2)+τ(C2))



11

About the Threshold Function τ

Intuitively Int(C) estimates local differences 
over component
– Small components give underestimate of local 

difference – neighboring pixels tend to be similar
• Thus τ should be large in this case

Use a function inversely proportional to 
component size τ(C) = k / |C|
– k is a parameter of the method that captures 

“scale of observation”
• Larger k means prefer larger components

– Other functions possible, e.g., based on shape
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The Algorithm

Sort edges of E into (e1, …, en), in order of non-
decreasing edge weight

Initialize S with one component per pixel

For each eq in (e1, …, en) do step 3

If weight of eq small relative to internal 
difference of components it connects then 
merge components, otherwise do nothing

I.e., if w(eq) ≤ MInt(Ci,Cj), where Ci,Cj∈S
are distinct components connected by eq, 
then update S by merging Ci and Cj

0.

1.

2.

3.
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Regions Found by the Algorithm

Three main regions plus a few small ones
Why the algorithm stops growing these 
– Weight of edges between A and B large wrt max 

weight MST edges of A and of B
– Weight of edges between B and C large wrt max 

weight MST edge of B (but not of C)

B CA
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Criteria for a Good Segmentation

Some predicate for comparing two regions
– Intuitively, evaluates whether there is evidence for 

a boundary between two regions

A segmentation is too fine when predicate 
says no evidence for a boundary
– Some pair of neighboring regions where predicate 

false

A segmentation is too coarse when there is 
some refinement that is not too fine
– A refinement is obtained by splitting one or more 

regions of a segmentation
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Good Segmentations and the 
Example

Splitting A, B or C 
would be too fine

Not splitting A from B 
or B from C would be 
too coarse

B CA
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Other Algorithms and the Criteria

Piecewise constant regions (or compact 
clusters in a color-based feature space)
– Too fine: arbitrarily split ramp in A into pieces
Breaking high cost edges in the MST of a 
graph corresponding to the image
– Both: merge A with B or split C into multiple 

pieces 

B CA
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Properties of the Algorithm

It is fast, O(n log n) for sorting in step 0 and 
O(nα(n)) for the remaining steps
– Using union-find with path compression to 

represent the partition, S

It produces good segmentations
– Neither too coarse nor too fine according to the 

above definitions 
• Despite being a greedy algorithm

It yields the same results regardless of the 
order that equal-weight edges are considered
– Proof a bit involved, won’t discuss here
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Components “Freeze”

When two components do not merge, one will 
be a component of the final segmentation
– A merge decision is made for an edge eq and the 

two components that it connects Ci, Cj

– Say the merge does not occur because w(eq) > 
Int(Ci)+τ(Ci)
• Then any subsequent merge involving Ci will also 

not occur, because edges are considered in non-
decreasing weight order

– Analogous for Cj, so when a merge fails one or 
both of the components involved “freeze”
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Segmentation Not Too Fine

Follows readily from fact that components 
“freeze”
– An edge between two components in final 

segmentation implies the algorithm decided not to 
merge when considering this edge
• Component that caused this decision is frozen, so 

appears in the final segmentation

Thus the decision that was true when the 
edge was considered remains true for the 
final segmentation
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Segmentation Not Too Coarse

Means any proper refinement is too fine
Suppose was a proper refinement, T, of the 
final segmentation, S, that is not too fine
– Consider the minimum weight edge, e, that is 

between two components A,B of T but is within a 
single component C of S

C
A Be
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Sketch Continued

All edges in MST of either A or B have 
weights smaller than w(e), say it is A
– Definition of not too fine, and predicate

Thus algorithm creates A before 
considering e
– Because all edges on boundary of A, but internal 

to C, have weight larger than w(e)

Since T not too fine, the decision criterion 
implies the algorithm would freeze A when 
considering e

C
A B

e
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Closely Related Problems Hard

What appears to be a slight change
– Make Dif be quantile instead of min 

k-th vi∈C1, vj∈C2
w((vi,vj))

– Desirable for addressing “cheap path” problem 
of merging based on one low cost edge

Makes problem NP hard
– Reduction from min ratio cut

• Ratio of “capacity” to “demand” between nodes

Other methods that we will see are also 
NP hard and approximated in various ways
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Some Implementation Issues

Smooth images slightly before processing
– Remove high variation due to digitization artifacts

Sorting is dominant time in processing
– For known edge distribution can in principle do 

better by binning

Treat color images as three separate images
– Components of segmentation are “intersection” of 

components from each of the three color planes
• Motivation: significant change in any color 

channel should result in a region boundary
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Some Example Segmentations

k=300
320 components
larger than 10

k=200
323 components
larger than 10
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Some Shortcomings

Smoothing can introduce problems
– “Extra regions” at boundaries
– Creates “ramps” between regions, thus merge
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Simple Object Examples
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Monochrome Example

Components locally connected (grid graph)
– Sometimes not desirable
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Clustering: Non-Local Components

Points in d-dimensional space
– Vertex for each point, edge weights based on 

distance in this space

Intuitively, Int measures “density” of clusters
– Smallest dilation radius such that all points in the 

cluster are connected
– When clusters separated by nearly same distance 

as their “densities” then segmentation is too fine

For efficiency use a graph with O(|V|) edges
– Use Mount’s approximate nearest neighbor 

algorithm to find nearest neighbors
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Clustering Gaussian Point Data

Graph connecting 
four nearest 
neighbors to each 
vertex

k = 1

Note: Gaussian not 
constant density

3 largest clusters, 75% classified 5 largest clusters, 95% classified
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Clustering for Image 
Segmentation

Treat each pixel as a point in a feature space
– More than just local intensity or color, incorporate 

spatial, texture, motion or other differences

Now regions of segmentation need not be 
connected in image
Practical issue, relatively expensive to find 
nearest neighbors for graph
– Can use neighbors in some fixed distance, but 

restricts regions that can be found
– In examples here use 4 nearest neighbors
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Example Clustering of Image Data

Segmentation using difference in R,G,B 
values and in position
– Distance of 5 pixels same as 1 intensity unit 

Non-Local 
Component
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About Clustering for Image Data

Meaningful regions in image are not 
necessarily compact in feature space 
Cheap path in feature space not always 
apparent in image
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Additional Example

High variability in illuminated tower pixels
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Beyond Grid Graphs

Image segmentation methods using 
affinity (or cost) matrices
– For each pair of vertices vi,vj an associated 

weight wij

• Affinity if larger when vertices more related
• Cost if larger when vertices less related

– Matrix W=[ wij ] of affinities or costs
• W is large, avoid constructing explicitly
• For images affinities tend to be near zero except 

for pixels that are nearby
− E.g., decrease exponentially with distance

• W is sparse
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Cut Based Techniques

For costs, natural to consider minimum 
cost cuts
– Removing edges with smallest total cost, that 

cut graph in two parts
– Graph only has non-infinite-weight edges

For segmentation, recursively cut resulting 
components
– Question of when to stop

Problem is that cuts tend to split off small 
components
– Few edges
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Normalized Cuts

A number of normalization criteria have 
been proposed
One that is commonly used

Where cut(A,B) is standard definition
∑i∈A,j∈B wij

And assoc(A,V) = ∑j ∑i∈A wij

Ncut(A,B) = 
cut(A,B) cut(A,B)

+
assoc(A,V) assoc(B,V)
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Computing Normalized Cuts

Has been shown this is equivalent to an 
integer programming problem, minimize

yT (D-W)y
yT D y

Subject to the constraint that yi∈{1,b} 
and yTD1=0
– Where 1 vector of all 1’s

W is the affinity matrix
D is the degree matrix (diagonal)

D(i,i) = ∑j wij
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Approximating Normalized Cuts

Integer programming problem NP hard
– Instead simply solve continuous (real-valued) 

version
– This corresponds to finding second smallest 

eigenvector of
(D-W)yi = λi Dyi

Widely used method
– Works well in practice

• Large eigenvector problem, but sparse matrices
• Often resolution reduce images, e.g, 100x100

– But no longer clearly related to cut problem
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Normalized Cut Examples
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Another Look at the Problem

Consider eigen analysis of affinity matrix
W = [ wij ]

– Note W is symmetric; for images wij=wji

– W also essentially block diagonal
• With suitable rearrangement of rows/cols so that 

vertices with higher affinity have nearer indices
• Entries far from diagonal are small (though not 

quite zero)

Eigenvectors of W
– Recall for real, symmetric matrix forms an 

orthogonal basis
• Axes of decreasing “importance”
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Structure of W

Eigenvectors of block diagonal matrix 
consist of eigenvectors of the blocks
– Padded with zeroes

Note rearrangement so that clusters lie 
near diagonal only conceptual
– Eigenvectors of permuted matrix are 

permutation of original eigenvectors

Can think of eigenvectors as being 
associated with high affinity “clusters”
– Eigenvectors with large eigenvalues
– Approximately the case
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Structure of W

Consider case of point set where affinities 
wij=exp(-(yi-yj)2/σ2)

With two clusters
– Points indexed to respect clusters for clarity

Block diagonal form of W
– Within cluster affinities A, B for clusters
– Between cluster affinity C

A
B
C

CTW=
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First Eigenvector of W

Recall, vectors xi satisfying Wxi=λixi

Consider ordered by eigenvalues λi
– First eigenvector x1 has largest eigenvalue λ1

Elements of first eigenvector serve as 
“index vector”
– Selecting elements of highest affinity cluster

W

Magnitude 
of elements

Points in plane
Elements of x1
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Clustering

First eigenvector of W has been suggested 
as clustering or segmentation criterion
– For selecting most significant segment
– Then recursively segment remainder

Problematic when similar affinity clusters 
(regions)

Points in plane Elements of x1W
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Understanding Normalized Cuts

Intractable discrete graph problem used to 
motivate continuous (real valued) problem
– Find second smallest “generalized eigenvector”

(D-W)xi = λiDxi

– Where D is (diagonal) degree matrix dii= ∑j wij

Can be viewed in terms of first two 
eigenvectors of normalized affinity matrix
– Let N=D-1/2WD-1/2

– Note nij=wij/(√dii √djj)
• Affinity normalized by degree of the two nodes
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Normalized Affinities

Can be shown that
– If x is an eigenvector of N with eigenvalue λ

then D-1/2x is a generalized eigenvector of W 
with eigenvalue 1-λ

– The vector D-1/21 is an eigenvector of N with 
eigenvalue 1

It follows that 
– Second smallest generalized eigenvector of W 

is ratio of first two eigenvectors of N
– So ncut uses normalized affinity matrix N and 

first two eigenvectors rather than affinity 
matrix W and first eigenvector
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Contrasting W and N

Three simple point clustering examples
– W, first eigenvector of W, ratio of first two 

eigenvectors of N (generalized eigenvector of W)
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Image Segmentation

Considering W and N for segmentation
– Affinity a negative exponential based on 

distance in x,y,b space

Eigenvectors of N more
correlated with regions

First 4 
eigenvectors 

of W

First 4 
eigenvectors 

of N
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Using More Eigenvectors

Based on k largest eigenvectors
– Construct matrix Q such that (ideally) qij=1 if i 

and j in same cluster, 0 otherwise

Let V be matrix whose columns are first k 
eigenvectors of W
Normalize rows of V to have unit Euclidean 
norm
– Ideally each node (row) in one cluster (col)

Let Q=VVT

– Each entry product of two unit vectors
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Normalization and k Eigenvectors

Normalized affinities help correct for 
variations in overall degree of affinity
– So compute Q for N instead of W

Contrasting Q with ratio of first two 
eigenvectors of N (ncut criterion)
– More clearly selects most significant region

• Using k=6 eigenvectors

– Row of Q matrix vs. ratio of eigenvectors of N

NQ Q N
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Spectral Methods

Eigenvectors of affinity and normalized 
affinity matrices
Widely used outside computer vision for 
graph-based clustering
– Link structure of web pages, citation structure 

of scientific papers
– Often directed rather than undirected graphs
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Mean Shift

Used both for segmentation and for edge 
preserving filtering
Operates on collection of points 
X={x1, …, xn} in Rd

Replace each point with value derived 
from mean shift procedure
– Searches for a local density maximum by 

repeatedly shifting a d-dimensional hyper-
sphere of fixed radius h

– Differs from most hyper-sphere based 
clustering in that no fixed number of clusters
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Mean Shift Procedure

For given point x∈X let y1, …, yT denote 
successive locations of that point

y1=x

yk+1 =1/|S(yk)| ∑x∈S(yk) x
– Where S(yk) is the subset of X contained in a 

hyper-sphere of radius h centered at yk

• The radius h is a fixed parameter of the method 

For a point set X, the mean shift 
procedure is applied separately to all the 
points 
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Illustration of Mean Shift

Path of successive values of yk for given 
starting point x

Can be shown that converges to local 
density maximum
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Mean Shift Image Filtering

Map each image pixel to point in u,v,b 
space

xi=(ui,vi,bi/σ)
– Analogous for color images, with three intensity 

values instead of one
– Scale factor σ normalizes intensity vs. spatial 

dimensions

Perform mean shift for each point
– Let Yi=(Ui,Vi,Bi) denote mean shifted value

Assign result zi=(ui,vi,Bi)
– Original spatial coords, mean shifted intensity
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Mean Shift Example
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Edge Preserving Filtering

Mean shift tends to preserve edges
Edges are where intensity is changing 
rapidly
Rapid changes in intensity will result in 
lower density regions in joint spatial-
intensity space
Mean shift finds local density maxima



58

Mean Shift Clustering

Run mean shift procedure for each point
Cluster resulting convergence points that 
closer than some small constant
Assign each point label of its cluster 
Analogous to filtering, but with added step 
of merging cluster that are nearby in the 
joint spatial-intensity domain
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About Mean Shift

Convergence to local density maximum
– Where “local” determined by sphere radius

Consider simple point set

Over wide range of sphere radii end up 
with two clusters
– Relationship to MST
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