
CS 664 Slides #11
Image Segmentation

Prof. Dan Huttenlocher
Fall 2003

2

Image Segmentation

Find regions of image that are “coherent”
“Dual” of edge detection
– Regions vs. boundaries

Related to clustering problems
– Early work in image processing and clustering

Many approaches
– Graph-based

• Cuts, spanning trees, MRF methods

– Feature space clustering
– Mean shift

3

A Motivating Example
Image segmentation plays a powerful role
in human visual perception
– Independent of particular objects or

recognition

This image has three
perceptually distinct regions

4

Graph Based Formulation

G=(V,E) with vertices corresponding to pixels
and edges connecting neighboring pixels

Weight of edge is magnitude of intensity
difference between connected pixels
A segmentation, S, is a partition of V such
that each C∈S is connected

4-connected or 8-conneted

5

Important Characteristics

Efficiency
– Run in time essentially linear in the number of

image pixels
• With low constant factors
• E.g., compared to edge detection

Understandable output
– Way to describe what algorithm does

• E.g., Canny edge operator and step edge plus noise

Not purely local
– Perceptually important

6

Motivating Example

Purely local criteria are
inadequate
– Difference along border between

A and B is less than differences
within C

Criteria based on piecewise
constant regions are
inadequate (e.g., Potts MRF)
– Will arbitrarily split A into

subparts

B CA

7

MST Based Approaches

Graph-based representation
– Nodes corresponding to pixels, edge weights are

intensity difference between connected pixels
Compute minimum spanning tree (MST)
– Cheapest way to connect all pixels into single

component or “region”
Selection criterion
– Remove certain MST edges to form components

• Fixed threshold
• Threshold based on neighborhood

− How to find neighborhood

8

Component Measure

Instead of constructing MST based on just
the edge weights
– Consider properties of two components being

merged when adding an edge

Recall Kruskal’s MST algorithm adds edges
from lowest to highest weight
– Only when connect distinct components

Apply criterion based on components to
further filter added edges
– Form of criterion limited by considering edges

weight ordered

9

Measuring Component Difference

Let internal difference of a component be
maximum edge weight in its MST

Int(C) = max e∈MST(C,E) w(e)
– Smallest weight such that all pixels of C are

connected by edges of at most that weight

Let difference between two components be
minimum edge weight connecting them

Dif(C1,C2) = min vi∈C1, vj∈C2
w((vi,vj))

– Note: infinite if there is no such edge

10

Region Comparison Function

Two components judged to be distinct when
Dif(C1,C2) large relative to Int(C1) or Int(C2)
– Require that it be sufficiently larger

– Controlled by (non-negative) threshold function τ

Region comparison function g(C1,C2) is true
when regions should be distinct, i.e., when

Dif(C1,C2) > MInt(C1,C2)
where MInt(C1,C2)

= min(Int(C1)+τ(C1), Int(C2)+τ(C2))

11

About the Threshold Function τ

Intuitively Int(C) estimates local differences
over component
– Small components give underestimate of local

difference – neighboring pixels tend to be similar
• Thus τ should be large in this case

Use a function inversely proportional to
component size τ(C) = k / |C|
– k is a parameter of the method that captures

“scale of observation”
• Larger k means prefer larger components

– Other functions possible, e.g., based on shape

12

The Algorithm

Sort edges of E into (e1, …, en), in order of non-
decreasing edge weight

Initialize S with one component per pixel

For each eq in (e1, …, en) do step 3

If weight of eq small relative to internal
difference of components it connects then
merge components, otherwise do nothing

I.e., if w(eq) ≤ MInt(Ci,Cj), where Ci,Cj∈S
are distinct components connected by eq,
then update S by merging Ci and Cj

0.

1.

2.

3.

13

Regions Found by the Algorithm

Three main regions plus a few small ones
Why the algorithm stops growing these
– Weight of edges between A and B large wrt max

weight MST edges of A and of B
– Weight of edges between B and C large wrt max

weight MST edge of B (but not of C)

B CA

14

Criteria for a Good Segmentation

Some predicate for comparing two regions
– Intuitively, evaluates whether there is evidence for

a boundary between two regions

A segmentation is too fine when predicate
says no evidence for a boundary
– Some pair of neighboring regions where predicate

false

A segmentation is too coarse when there is
some refinement that is not too fine
– A refinement is obtained by splitting one or more

regions of a segmentation

15

Good Segmentations and the
Example

Splitting A, B or C
would be too fine

Not splitting A from B
or B from C would be
too coarse

B CA

16

Other Algorithms and the Criteria

Piecewise constant regions (or compact
clusters in a color-based feature space)
– Too fine: arbitrarily split ramp in A into pieces
Breaking high cost edges in the MST of a
graph corresponding to the image
– Both: merge A with B or split C into multiple

pieces

B CA

17

Properties of the Algorithm

It is fast, O(n log n) for sorting in step 0 and
O(nα(n)) for the remaining steps
– Using union-find with path compression to

represent the partition, S

It produces good segmentations
– Neither too coarse nor too fine according to the

above definitions
• Despite being a greedy algorithm

It yields the same results regardless of the
order that equal-weight edges are considered
– Proof a bit involved, won’t discuss here

18

Components “Freeze”

When two components do not merge, one will
be a component of the final segmentation
– A merge decision is made for an edge eq and the

two components that it connects Ci, Cj

– Say the merge does not occur because w(eq) >
Int(Ci)+τ(Ci)
• Then any subsequent merge involving Ci will also

not occur, because edges are considered in non-
decreasing weight order

– Analogous for Cj, so when a merge fails one or
both of the components involved “freeze”

19

Segmentation Not Too Fine

Follows readily from fact that components
“freeze”
– An edge between two components in final

segmentation implies the algorithm decided not to
merge when considering this edge
• Component that caused this decision is frozen, so

appears in the final segmentation

Thus the decision that was true when the
edge was considered remains true for the
final segmentation

20

Segmentation Not Too Coarse

Means any proper refinement is too fine
Suppose was a proper refinement, T, of the
final segmentation, S, that is not too fine
– Consider the minimum weight edge, e, that is

between two components A,B of T but is within a
single component C of S

C
A Be

21

Sketch Continued

All edges in MST of either A or B have
weights smaller than w(e), say it is A
– Definition of not too fine, and predicate

Thus algorithm creates A before
considering e
– Because all edges on boundary of A, but internal

to C, have weight larger than w(e)

Since T not too fine, the decision criterion
implies the algorithm would freeze A when
considering e

C
A B

e

22

Closely Related Problems Hard

What appears to be a slight change
– Make Dif be quantile instead of min

k-th vi∈C1, vj∈C2
w((vi,vj))

– Desirable for addressing “cheap path” problem
of merging based on one low cost edge

Makes problem NP hard
– Reduction from min ratio cut

• Ratio of “capacity” to “demand” between nodes

Other methods that we will see are also
NP hard and approximated in various ways

23

Some Implementation Issues

Smooth images slightly before processing
– Remove high variation due to digitization artifacts

Sorting is dominant time in processing
– For known edge distribution can in principle do

better by binning

Treat color images as three separate images
– Components of segmentation are “intersection” of

components from each of the three color planes
• Motivation: significant change in any color

channel should result in a region boundary

24

Some Example Segmentations

k=300
320 components
larger than 10

k=200
323 components
larger than 10

25

Some Shortcomings

Smoothing can introduce problems
– “Extra regions” at boundaries
– Creates “ramps” between regions, thus merge

26

Simple Object Examples

27

Monochrome Example

Components locally connected (grid graph)
– Sometimes not desirable

28

Clustering: Non-Local Components

Points in d-dimensional space
– Vertex for each point, edge weights based on

distance in this space

Intuitively, Int measures “density” of clusters
– Smallest dilation radius such that all points in the

cluster are connected
– When clusters separated by nearly same distance

as their “densities” then segmentation is too fine

For efficiency use a graph with O(|V|) edges
– Use Mount’s approximate nearest neighbor

algorithm to find nearest neighbors

29

Clustering Gaussian Point Data

Graph connecting
four nearest
neighbors to each
vertex

k = 1

Note: Gaussian not
constant density

3 largest clusters, 75% classified 5 largest clusters, 95% classified

30

Clustering for Image
Segmentation

Treat each pixel as a point in a feature space
– More than just local intensity or color, incorporate

spatial, texture, motion or other differences

Now regions of segmentation need not be
connected in image
Practical issue, relatively expensive to find
nearest neighbors for graph
– Can use neighbors in some fixed distance, but

restricts regions that can be found
– In examples here use 4 nearest neighbors

31

Example Clustering of Image Data

Segmentation using difference in R,G,B
values and in position
– Distance of 5 pixels same as 1 intensity unit

Non-Local
Component

32

About Clustering for Image Data

Meaningful regions in image are not
necessarily compact in feature space
Cheap path in feature space not always
apparent in image

33

Additional Example

High variability in illuminated tower pixels

34

Beyond Grid Graphs

Image segmentation methods using
affinity (or cost) matrices
– For each pair of vertices vi,vj an associated

weight wij

• Affinity if larger when vertices more related
• Cost if larger when vertices less related

– Matrix W=[wij] of affinities or costs
• W is large, avoid constructing explicitly
• For images affinities tend to be near zero except

for pixels that are nearby
− E.g., decrease exponentially with distance

• W is sparse

35

Cut Based Techniques

For costs, natural to consider minimum
cost cuts
– Removing edges with smallest total cost, that

cut graph in two parts
– Graph only has non-infinite-weight edges

For segmentation, recursively cut resulting
components
– Question of when to stop

Problem is that cuts tend to split off small
components
– Few edges

36

Normalized Cuts

A number of normalization criteria have
been proposed
One that is commonly used

Where cut(A,B) is standard definition
∑i∈A,j∈B wij

And assoc(A,V) = ∑j ∑i∈A wij

Ncut(A,B) =
cut(A,B) cut(A,B)

+
assoc(A,V) assoc(B,V)

37

Computing Normalized Cuts

Has been shown this is equivalent to an
integer programming problem, minimize

yT (D-W)y
yT D y

Subject to the constraint that yi∈{1,b}
and yTD1=0
– Where 1 vector of all 1’s

W is the affinity matrix
D is the degree matrix (diagonal)

D(i,i) = ∑j wij

38

Approximating Normalized Cuts

Integer programming problem NP hard
– Instead simply solve continuous (real-valued)

version
– This corresponds to finding second smallest

eigenvector of
(D-W)yi = λi Dyi

Widely used method
– Works well in practice

• Large eigenvector problem, but sparse matrices
• Often resolution reduce images, e.g, 100x100

– But no longer clearly related to cut problem

39

Normalized Cut Examples

40

Another Look at the Problem

Consider eigen analysis of affinity matrix
W = [wij]

– Note W is symmetric; for images wij=wji

– W also essentially block diagonal
• With suitable rearrangement of rows/cols so that

vertices with higher affinity have nearer indices
• Entries far from diagonal are small (though not

quite zero)

Eigenvectors of W
– Recall for real, symmetric matrix forms an

orthogonal basis
• Axes of decreasing “importance”

41

Structure of W

Eigenvectors of block diagonal matrix
consist of eigenvectors of the blocks
– Padded with zeroes

Note rearrangement so that clusters lie
near diagonal only conceptual
– Eigenvectors of permuted matrix are

permutation of original eigenvectors

Can think of eigenvectors as being
associated with high affinity “clusters”
– Eigenvectors with large eigenvalues
– Approximately the case

42

Structure of W

Consider case of point set where affinities
wij=exp(-(yi-yj)2/σ2)

With two clusters
– Points indexed to respect clusters for clarity

Block diagonal form of W
– Within cluster affinities A, B for clusters
– Between cluster affinity C

A
B
C

CTW=

43

First Eigenvector of W

Recall, vectors xi satisfying Wxi=λixi

Consider ordered by eigenvalues λi
– First eigenvector x1 has largest eigenvalue λ1

Elements of first eigenvector serve as
“index vector”
– Selecting elements of highest affinity cluster

W

Magnitude
of elements

Points in plane
Elements of x1

44

Clustering

First eigenvector of W has been suggested
as clustering or segmentation criterion
– For selecting most significant segment
– Then recursively segment remainder

Problematic when similar affinity clusters
(regions)

Points in plane Elements of x1W

45

Understanding Normalized Cuts

Intractable discrete graph problem used to
motivate continuous (real valued) problem
– Find second smallest “generalized eigenvector”

(D-W)xi = λiDxi

– Where D is (diagonal) degree matrix dii= ∑j wij

Can be viewed in terms of first two
eigenvectors of normalized affinity matrix
– Let N=D-1/2WD-1/2

– Note nij=wij/(√dii √djj)
• Affinity normalized by degree of the two nodes

46

Normalized Affinities

Can be shown that
– If x is an eigenvector of N with eigenvalue λ

then D-1/2x is a generalized eigenvector of W
with eigenvalue 1-λ

– The vector D-1/21 is an eigenvector of N with
eigenvalue 1

It follows that
– Second smallest generalized eigenvector of W

is ratio of first two eigenvectors of N
– So ncut uses normalized affinity matrix N and

first two eigenvectors rather than affinity
matrix W and first eigenvector

47

Contrasting W and N

Three simple point clustering examples
– W, first eigenvector of W, ratio of first two

eigenvectors of N (generalized eigenvector of W)

48

Image Segmentation

Considering W and N for segmentation
– Affinity a negative exponential based on

distance in x,y,b space

Eigenvectors of N more
correlated with regions

First 4
eigenvectors

of W

First 4
eigenvectors

of N

49

Using More Eigenvectors

Based on k largest eigenvectors
– Construct matrix Q such that (ideally) qij=1 if i

and j in same cluster, 0 otherwise

Let V be matrix whose columns are first k
eigenvectors of W
Normalize rows of V to have unit Euclidean
norm
– Ideally each node (row) in one cluster (col)

Let Q=VVT

– Each entry product of two unit vectors

50

Normalization and k Eigenvectors

Normalized affinities help correct for
variations in overall degree of affinity
– So compute Q for N instead of W

Contrasting Q with ratio of first two
eigenvectors of N (ncut criterion)
– More clearly selects most significant region

• Using k=6 eigenvectors

– Row of Q matrix vs. ratio of eigenvectors of N

NQ Q N

51

Spectral Methods

Eigenvectors of affinity and normalized
affinity matrices
Widely used outside computer vision for
graph-based clustering
– Link structure of web pages, citation structure

of scientific papers
– Often directed rather than undirected graphs

52

Mean Shift

Used both for segmentation and for edge
preserving filtering
Operates on collection of points
X={x1, …, xn} in Rd

Replace each point with value derived
from mean shift procedure
– Searches for a local density maximum by

repeatedly shifting a d-dimensional hyper-
sphere of fixed radius h

– Differs from most hyper-sphere based
clustering in that no fixed number of clusters

53

Mean Shift Procedure

For given point x∈X let y1, …, yT denote
successive locations of that point

y1=x

yk+1 =1/|S(yk)| ∑x∈S(yk) x
– Where S(yk) is the subset of X contained in a

hyper-sphere of radius h centered at yk

• The radius h is a fixed parameter of the method

For a point set X, the mean shift
procedure is applied separately to all the
points

54

Illustration of Mean Shift

Path of successive values of yk for given
starting point x

Can be shown that converges to local
density maximum

55

Mean Shift Image Filtering

Map each image pixel to point in u,v,b
space

xi=(ui,vi,bi/σ)
– Analogous for color images, with three intensity

values instead of one
– Scale factor σ normalizes intensity vs. spatial

dimensions

Perform mean shift for each point
– Let Yi=(Ui,Vi,Bi) denote mean shifted value

Assign result zi=(ui,vi,Bi)
– Original spatial coords, mean shifted intensity

56

Mean Shift Example

57

Edge Preserving Filtering

Mean shift tends to preserve edges
Edges are where intensity is changing
rapidly
Rapid changes in intensity will result in
lower density regions in joint spatial-
intensity space
Mean shift finds local density maxima

58

Mean Shift Clustering

Run mean shift procedure for each point
Cluster resulting convergence points that
closer than some small constant
Assign each point label of its cluster
Analogous to filtering, but with added step
of merging cluster that are nearby in the
joint spatial-intensity domain

59

About Mean Shift

Convergence to local density maximum
– Where “local” determined by sphere radius

Consider simple point set

Over wide range of sphere radii end up
with two clusters
– Relationship to MST

	CS 664 Slides #11Image Segmentation
	Image Segmentation
	Graph Based Formulation
	Important Characteristics
	Motivating Example
	MST Based Approaches
	Component Measure
	Measuring Component Difference
	Region Comparison Function
	About the Threshold Function ?
	The Algorithm
	Regions Found by the Algorithm
	Criteria for a Good Segmentation
	Good Segmentations and the Example
	Other Algorithms and the Criteria
	Properties of the Algorithm
	Components “Freeze”
	Segmentation Not Too Fine
	Segmentation Not Too Coarse
	Sketch Continued
	Closely Related Problems Hard
	Some Implementation Issues
	Some Example Segmentations
	Some Shortcomings
	Simple Object Examples
	Monochrome Example
	Clustering: Non-Local Components
	Clustering Gaussian Point Data
	Clustering for Image Segmentation
	Example Clustering of Image Data
	About Clustering for Image Data
	Additional Example
	Beyond Grid Graphs
	Cut Based Techniques
	Normalized Cuts
	Computing Normalized Cuts
	Approximating Normalized Cuts
	Normalized Cut Examples
	Another Look at the Problem
	Structure of W
	Structure of W
	First Eigenvector of W
	Clustering
	Understanding Normalized Cuts
	Normalized Affinities
	Contrasting W and N
	Image Segmentation
	Using More Eigenvectors
	Normalization and k Eigenvectors
	Spectral Methods
	Mean Shift
	Mean Shift Procedure
	Illustration of Mean Shift
	Mean Shift Image Filtering
	Mean Shift Example
	Edge Preserving Filtering
	Mean Shift Clustering
	About Mean Shift

