CS 664 Slides \#10 Structure From Motion

Prof. Dan Huttenlocher Fall 2003

Structure From Motion

- Recover 3D coordinates from set of 2D views
- Rigid body motion
- Known correspondence of points in views
- Various camera models
- Consider representative case of
- Parallel (orthographic) projection
- All points visible in all views
- Un-calibrated camera
- No outliers (least squares ok)

Parallel Projection

- Point (X, Y, Z) in space projects to (X, Y) in image plane
- Contrast with ($\mathrm{fX} / \mathrm{Z}, \mathrm{fY} / \mathrm{Z}$) in pinhole model
- Light rays all parallel rather than through principal point
- Similar when points at same depth, narrow FOV

Recovering 3D Structure

- With enough corresponding points and views can determine 3D locations
- Redundant information
- Each view changes only viewing parameters and not point locations
- 3P unknowns for P points and $k F$ unknowns for F views
- Minimum sufficient correspondences
- Orthographic projection, three views of four points
- Central (pinhole) projection, two views of eight points

Sensitive to Measurement Noise

- Solutions based on a small number of points are not stable
- Errors of the magnitude found in most images yield substantial differences in recovered 3D values
- Method that works in practice called factorization
- Works on sequence of several frames
- With correspondences of points
- Consider case of factorization for orthographic projection, no outliers, can be extended

Input: Sequence of Tracked Points

- Point coordinates

$$
\mathrm{w}_{\mathrm{fp}}^{\prime}=\left(\mathrm{u}_{\mathrm{fp}}^{\prime}, \mathrm{v}_{\mathrm{fp}}^{\prime}\right)
$$

- Where f denotes frame index and p denotes point index
- Points tracked over frames
- E.g., use corner trackers discussed previously

1

2

3

F

Centroid Normalized Coordinates

- From observed coordinates $w_{f p}^{\prime}=\left(u_{f p}^{\prime}, v_{f p}^{\prime}\right)$

$$
w_{f p}=\left(u_{f p}^{\prime}-\bar{u}_{f p}, v_{f p}^{\prime}-\bar{v}_{f p}\right)
$$

- Where

$$
\bar{u}_{\mathfrak{f p}}=(1 / P) \Sigma_{\mathrm{p}} \mathrm{u}_{\mathrm{fp}}^{\prime}
$$

and
Centroids

$$
\bar{v}_{\mathfrak{f p}}=(1 / P) \Sigma_{p} v_{f p}^{\prime}
$$

Normalization

- Goal of separating out effects of camera translation from those of rotation
- Subtract out centroid to remove translation effects
- Assume all points belong to object and present at all frames
- Centroid preserved under projection
- Left to recover 3D coordinates (shape) of
P points from F camera orientations

Measurement Matrix

- 2 FxP - 2 rows per frame, one col per point
- In absence of senor noise this matrix is highly rank deficient
- Under orthographic projection rank 3 or less

$$
\mathrm{W}=\left[\begin{array}{ccc}
\mathrm{u}_{11} & \ldots & \mathrm{u}_{1 \mathbf{P}} \\
\vdots & & \vdots \\
\mathrm{u}_{\mathrm{F} 1} & \ldots & \mathrm{u}_{\mathrm{FP}} \\
\mathrm{v}_{11} & \ldots & \mathrm{v}_{1 \mathbf{P}} \\
\vdots & & \vdots \\
\mathrm{v}_{\mathrm{F} 1} & \ldots & \mathrm{v}_{\mathrm{FP}}
\end{array}\right]
$$

Structure of W

- World point $\mathrm{s}_{\mathrm{p}}{ }^{\prime}=\left(\mathrm{x}_{\mathrm{p}}{ }^{\prime}, \mathrm{y}_{\mathrm{p}}{ }^{\prime} \mathrm{z}_{\mathrm{p}}{ }^{\prime}\right)$ projects to image points

$$
\begin{aligned}
u_{f p}^{\prime} & =m_{f}^{\top}\left(s_{p}^{\prime}-t_{f}\right) \\
v_{f p}^{\prime} & =n_{f}^{\top}\left(s_{p}^{\prime}-t_{f}\right)
\end{aligned}
$$

- Where m_{f}, n_{f} are unit vectors defining orientation of image plane in world
- And t_{f} is vector from world origin to
 image plane origin

Structure of W (Cont'd)

- Can rewrite in centroid normalized coordinates
- Since centroid preserved under projection
- Projection of centroid is centroid of projection

$$
\begin{aligned}
\mathrm{u}_{\mathrm{fp}} & =\mathrm{m}_{\mathrm{f}}^{\top} \mathrm{s}_{\mathrm{p}} \\
\mathrm{v}_{\mathrm{fp}} & =\mathrm{n}_{\mathrm{f}}^{\top} \mathrm{s}_{\mathrm{p}}
\end{aligned}
$$

- Where

$$
S_{p}=S_{p}^{\prime}-\bar{s}
$$

and

$$
\overline{\mathrm{s}}=(1 / \mathrm{P}) \sum_{\mathbf{p}} \mathrm{s}_{\mathbf{p}}^{\prime}
$$

W Factors Into Simple Product

- W=MS where
- M is $2 F x 3$ matrix of camera locations
- S is $3 \times \mathrm{P}$ matrix of points in world
- Product is 2Fx3 matrix W
- Clearly rank at most 3

$$
M=\left[\begin{array}{c}
m_{\mathbf{1}}{ }^{\mathbf{T}} \\
\vdots \\
m_{\mathbf{F}}{ }^{\mathbf{T}} \\
\mathrm{n}_{\mathbf{1}}^{\boldsymbol{\top}} \\
\vdots \\
\mathrm{n}_{\mathbf{F}}{ }^{\mathbf{T}}
\end{array}\right] \quad \mathrm{S}=\left[\begin{array}{lll}
\mathrm{s}_{\mathbf{1}} & \ldots & \mathrm{s}_{\mathbf{P}}
\end{array}\right]
$$

Factoring W

- Don't know M,S only measurements W
- When noise or errors in measurements seek least squares approximation
- Note I.s. assumes no outliers (bad data) $\operatorname{argmin}_{M, S}\|W-M S\| 2$
- The best M,S of this form can be found using the SVD of W

W=ULV

Σ^{\prime} contains only three largest singular values

$$
\begin{aligned}
& M^{*}=U \Sigma^{11 / 2} \\
& S^{*}=\Sigma^{1 / 2} V
\end{aligned}
$$

Factorization Not Unique

- Any linear transformation of M, S possible

$$
W=M S=M\left(L^{-1}\right) S=(M L)\left(L^{-1} S\right)
$$

- Often referred to as "affine shape"
- Preserves parallelism/coplanarity
- Still haven't used a constraint on the form of M
- Describes camera plane orientation at each frame m_{i}, n_{i} all unit vectors $m_{i} n_{i}=0$
$\left[\begin{array}{c}m_{1}{ }^{\mathbf{T}} \\ \vdots \\ m_{\mathbf{F}}{ }^{\mathbf{T}} \\ \mathrm{n}_{\mathbf{1}}{ }^{\mathbf{T}} \\ \vdots \\ \mathrm{n}_{\mathbf{F}}{ }^{\mathbf{T}}\end{array}\right]$

Factorization Results

1

60

120

40

80

150

