
Computer Science 664
Fall 2003

Assignment 2

Due Date: Monday November 3, 5pm (hardcopy to 4114 Upson and electronic to dph
“at” cs.cornell.edu).

Material: Lectures on motion estimation.

In this problem set you will implement and experiment with parametric motion estima-
tion. We will consider only the problem of estimating the best global translation u mapping
pixels of image I to pixels of image J . As discussed in class, more complex parametric mo-
tions such as affine, projective, or “plane plus parallax” can produce useful estimates of
image motion for a wide range of problems including insertion of artificial objects into
video, construction of panoramic mosaics, and detection and removal of moving objects in
video.

Recall that applying the gradient constraint, one can use local estimates of image deriva-
tives to compute the least squares estimate of a parametric motion such as the translation
u (as well as other more complex transformation such as affine, etc.). However, the lin-
earization underlying this approach assumes that the magnitude of the motion is small
(each pixel is displaced approximately one pixel or less).

For each image pixel i, let ∆xi and ∆yi denote the finite difference approximation to
spatial derivitaves of I, and let ∆ti denote the finte difference approximate time derivative
(the difference between images I and J at pixel i).

The least squares estimate for the translation u = minu ‖Du − t‖ where

D =




∆xi ∆yi
...

...
∆xn ∆yn




is an array of the spatial derivatives at each pixel and and t = [t1, . . . , ti]
T is a column

vector of the time derivative at each pixel.

The minimizing value u∗ can be found by the method of normal equations, u∗ =
(DTD)−1DT t. Note that this is simply a 2 × 2 system, where

DT D =

[∑
i ∆x2

i

∑
i ∆xi∆yi∑

i ∆xi∆yi
∑

i ∆y2
i

]

and

DT t =

[∑
i

∆ti∆xi

∑
i

∆ti∆yi

]
.

Moreover, (DT D), is a symmetric 2x2 matrix and so its inverse can be computed easily in
closed form (there is no need for general matrix inverse code).

1. Implement the normal equations method of solving for the best least squares estimate
u∗ of the translation from I to J , using the estimates of local derivatives. This need
only work for small motions (a pixel or so).

Hand in the code for this, together with a written description of any issues you needed
to address. Also hand in the estimate that you compute for the test image pairs.

2. The estimates computed above are only valid if the translations are small. In this
part, you should implement a 5-level Gaussian pyramid (i.e., the coarsest scale images
should be scaled by 25 from the original images), and perform motion estimation using
the least squares method applied to the Gaussian pyramid.

Recall that a Gaussian pyramid is obtained by smoothing the image with Gaussian
(use σ = 1) and then subsampling every-other pixel to obtain an image half as large.
This is repeated to obtain another image that is again half as large, and so on.
(Note: You can use the Gaussian smoothing function in the image libraries or your
own implementation.)

As discussed in class, to estimate motion using a Gaussian pyramid, first estimate the
motion from I to J at the coarsest scale. Then transform the image J by applying
the inverse motion to J , at one finer scale. This ensures systematic consideration
of the pixels in the image being synthesized. To apply a motion estimate computed
at one scale to the next finer scale you must multiply it by 2, as the finer scale
image has twice the resolution. Note that the estimated motions will not necessarily
be integer pixels. You should use bilinear interpolation, as covered in lecture, to
compute intermediate values.

Given a coarse motion estimate at one level, compute the motion estimate at the next
finer level between I and the transformed J . To keep track of the overall motion,
you must add this to the transformation that you used to warp J at the next level.
That is, at each level you are estimating just the offset from the motion computed
at the coarser level. To get the actual motion you need to add this offset to the
previous estimate. The final result after all levels of the pyramid are considered is
the overall motion estimate, which need not be local because it is the sum of local
transformations at various scales.

Hand in the code for this, together with a written description of any issues you needed
to address. Also hand in the estimates that you compute for the test image pairs.

3. When there are pixels that do not fit the overall motion, a least squares fit may be
fairly inaccurate. As discussed in class, iterative least squares (IRLS) can be used
to discard outliers and obtain a better estimate of the translation. In this case, the
computation is u∗ = (DTW 2D)−1DTW 2t where W is a diagonal weight matrix. The

i-th weight along the diagonal, wi is based on the error in the motion estimate at the
i-th image pixel. You should define and explain an error measure for the motion at
a given pixel (larger values for more error). Be clear in your writeup.

Given your local error measure at each pixel i, call it ri, let wi = 1 if ri < c and let
wi = c/ri otherwise, where the “tuning constant” c is 1.5 times the median of the
ri’s.

Again the overall system is 2 × 2, and DT W 2D is just like DT D above, except each
element in each summation is scaled by w2

i and analogously for DT t.

IRLS starts with an initial motion estimate, which you should compute using your
normal least squares method from Part 1. Then, use that u∗ to compute local error
measures ri and a resulting weight matrix. Compute a new value of u∗ using the
weighted computation, and again compute new errors and weights, iterating until the
change in u∗ is small.

You should apply the IRLS method to obtain a motion estimate at each level of the
Gaussian pyramid from Part 2.

An image with the error values ri can be a useful way of seeing where in the image
things do not match the overall motion. Where this image is bright (large values)
motions do not match. Your code should output such an image for the original image
level of the Gaussian pyramid.

For this part hand in your writeup, code, the error images, and the overall translation
estimates you obtain for the test image pairs.

4. Given the final motion estimates, one can create synthetic images that superimpose
two (or more in the case of sequences) images with one another. In computing the
Gaussian pyramid you already had to write code for translating an image from one
reference frame to another with sub-pixel accuracy. You should use that code to
output an image that “stitches” together two images, in terms of the reference frame
of the first image, based on the translation that best aligns them. Some of the pixels
will be available in both images, others will be from just one of the two images. When
you have pixels that are available in both images you should compute the average of
the two values.

Again discuss any issues you encounter. For this part hand in your writeup, code and
the composite images for the test image pairs given the best motion estimates that
you computed in Part 3.

5. Extra Credit. Extend your implementation to compute the best 2d affine transfor-
mation rather than the best translation, using the formulation covered in class.

