Expansion Moves, Approximation Bound, and Slanted Surfaces

Scribe: Eric Choi

Lecturer: Professor R. Zabih
CS 664 Lecture \#9 Machine Vision 10/2/01

Swap moves not equal to an approximation algorithm

$d(a, b)=d(b, c)=\frac{k}{2} \quad d(a, c)=k$
Cost of having label a next to label b

	1		2
3			
a	0	k	k
b	k	0	k
	c	2	2
			0

a	b	c

Minium cost would be to have this arrangement

c	c	c
Cost $=4$		

α, f
find $\mathrm{f}^{\prime}=$ avgerage minium of $\mathrm{E}(f) \quad \mathrm{f}$ when α - expansion of f
 α compete with everyone else

d-link costs not a problem n -link costs are a problem

In event of assign $\mathrm{p} \& \mathrm{q}$ to $\bar{\alpha}$ no n -link cost for same terminal
When $\mathrm{f}(\mathrm{p}) \neq \mathrm{f}(\mathrm{q})$ then there is a cost

No Cost or Free $f^{\prime}(p)=f^{\prime}(q)=\alpha$
Should be expensive when $\mathrm{f}^{\prime}(\mathrm{p}) \neq \mathrm{f}^{\prime}(\mathrm{q})$
Should be expensive when $f^{\prime}(p)=f^{\prime}(q)=\bar{\alpha}$ if and only if $f(p) \neq f(q)$

Optimality Proof
^
f a local minimum with respects to α-expansion for all α f^{*} global minimum

$E(\hat{f}) \leq 2 E\left(f^{*}\right)$
$A=\left\{p \mid f^{*}(p)=\alpha\right\}$
f^{α} expand \hat{f} to make $\mathrm{A}=\alpha$
\hat{f} local minimum $E(f) \leq \hat{E}\left(f^{\alpha}\right)$
$E_{A}(f)=$ Energ involving A
data + smoothness
$\mathrm{c}(\mathrm{p}, \mathrm{l}) \quad$ discontinuities p, q
$\mathrm{p} \in \mathrm{A} \quad \mathrm{p}$ or $\mathrm{q} \in \mathrm{A}$
$E_{A}(\hat{f}) \leq E_{A}\left(f^{\alpha}\right) \leq E_{A}\left(f^{*}\right)$
$\sum_{A} E_{A}(\hat{f}) \leq E_{A}\left(f^{\alpha}\right)$
$E(\hat{f}) \leq E\left(f^{*}\right)+\lambda \# \operatorname{disc}\left(f^{*}\right)$
$E(\hat{f}) \leq 2 E\left(f^{*}\right)$

POTTS MODEL
Potts model prefers piecewise constant solutions

Ideal for the potts model

L varies
Set $L=Z^{+}\{0,1, . ., 16\}$
Sloped surface looks like connected components with segmentation

Consider each segment

Find a plane that best explains the intensities of the segment Hypothesize a plane J that will fit this segment

Eventually, find a plane equation for the segment with a slope
These plane equations become L
Now run again using the new label set.
One of the plane equations using the potts model will win.

