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1. Motivation
Recall the energy function Ef. In terms of the Potts model we may informally write the

energy function as
Ef = ∑

p∈P
Cp, fp + λ # discontinuities .

The number of discontinuities may also be thought of as the number of disconnected
components. This is what we strive for in the Multi-Way Cut (MWC) problem. Our goal is
to separate terminal [label] nodes from pixel nodes through inspection of wieghts (Fig. 1).
We are therefore looking for the cheapest multiway cut.
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Figure 1

We know that solving the Potts problem is NP-hard, but so is MWC. What we want is to
turn an instance of the Potts problem into a MWC, and vice-versa. If that is the case, then a
2-Approximation algorithm (2-APPR) for MWC would suggest ∃ 2-APPR for the Potts
problem. Before we derive this, let’s examine MWC some more.

The weights on the arcs in the graph, such as wx (Fig. 1) arise from the ”smoothness”
term in Ef. The weights among the pixels, i.e. wy, are from the ”data” term λ in Ef.
These pixel-pixel arcs are also known as ”n-links”, whereas the label-pixel arcs are
”d-links”.

MWC is defined by the minimum cut property. So for a graph G = V,E, we look for a
set C ⊂ E which separates the vertex sets S and T such that V = S ∪ T. It is important to
realize that C has no subsets that can do this as well.

But suppose we are given the graph in Fig. 2. This would not be a MWC! The reason is
that we can’t have p,q ∈ C ∧ q, r ∈ C. If they both belonged to C then ∃ path
〈α,q, r,β〉. In the end, if we do have a MWC then a pixel p ∈ S = P is connected to no more
than 1 label (terminal) l ∈ T. Conceptually, one may envision this as each terminal grabbing
a piece of an image.
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Figure 2

In order to make our graph behave correctly we want to make all the arcs (edges)
non-negative. For a d-link we have some value K − cp,α where c is a cost function. To
ensure this we choose some big value for K. One example is K > maxcp,α ∀p,α. This
is commonly overlooked because we wish to cut the light weights, and not vice versa.

2. Approximation for the Potts Model
From now on let us write |C| as the summation of the weights in the multiway cut C. We

then have the sum of n-links and d-links to equal the energy function (plus a constant). In
other words,

|C| = EfC + const
where fC denotes the function that assigns a label l to all its pixels. Now consider Fig. 3

as a snapshot of a much larger net of pixels. Calculating the cost of d-links out of p procedes
as follows:

|C| = ∑
pεP

∑
L≠fCp

K − cp, fCp

= ∑
pεP

m − 1K −∑
pεP

cp, fCp

= ∑
pεP

m − 1K + cp, fCp −∑
l∈L

cp, l cost of labels 

= ∑
pεP

cp, fCp + const

We now have an approximation for the Potts model. However, we are looking for a
2-APPR to the MWC, so we can take advantage of a key notion, that of an isolating cut.
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Figure 3
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A method to generate such a cut can be described in 3 steps. ∀ terminals do:
1 pick a terminal α as a source

2 link all others to vertex (super-sink) t with ∞ cost arcs (i.e. can’t be cut)

3 run the MINCUT algorithm

Note that 2 things may go wrong with the above procedure.
1 Dangling nodes (pixels) may exist. SOLUTION: Pick a [random]

terminal for it.

2∗ Overlapping of the labeled regions may occur (Fig. 4). SOLUTION:

(Easy) Can’t really happen. Keep reading for the real problem.
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Figure 4

This isolation heuristic gives a 2-APPR for MWC. But EfC ≤ EfC∗
 since

|C| ≤ 2|C∗ |, and we see that EfC ≤ 2EfC∗
 + const given that C∗ is the minimum

multiway cut. That means we can’t get an optimal labeling within a constant energy factor.
This is actually the 2nd problem, not 2∗ as listed above.

3. Swap Moves
Maybe we can get a good APPR using swap moves. Specifically we’re asking the

following:
Given a labeling F and α,β pairs, can we find an average

minimization Ef ′,with f ′near f within1 α − β swap move?

A swap move is a mapping f  f ′ if fp ∉ α,β → f ′p = fp. A special case of
this is a standard Simulated Annealing move, which happens to be just a degenerate swap
move. In an algorithm we ignore all but the α,β pair. This is when the two labels ”fight it
out.” So to minimize f we define the procedure:

MINf ≡
∀α,β find cheapest f ′,

if Ef > Ef ′ then f = f ′ cycle

iteration

4. Expansion Moves
But this is not the APPR we want due to the choice of arbitrary swaps. Instead we will
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utilize expansion moves. These will lead us to a 2-APPR.
EXPANSION MOVE (α: expansion) ≡ if ∀p fp = α → f ′p = α

f ′p ≠ α → f ′p = fp

5. Concluding Remarks
a) The 3 moves covered can be categorized as

EXP            SWAP

     STANDARD

b) These moves are powerful – with EXPANSION we can get to the global minimum
f  f ′ f∗ in m EXP moves irrespective of the huge label space.
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