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• In the last lecture, we examine the bone fracture example. One student
was asking about the need to do image restoration in this case. Why can’t
we just examine the x-ray intensity directly?

• We can appreciate the need for these image processing requirements from
another application of motion detection. Given two images I(t) and I(t+1).
These two images are roughly the same except for a slight change in the
position of the moving object. In this application, we are interested in
solving the Correspondence Problem of what went where. Such a problem
can be viewed from the perspective of a vector field. The exploration of
motion detection obtains its motivation from disciplines like medical sci-
ence, where computation of the ejection fraction of the heart forms the
basis for detecting certain heart malfunction.

• How are heart images obtained? The use of dye that has the ability to
stop x-rays is one way to obtain x-rays diagrams of the human interior
heart chamber tissues. X-ray angiography is another possible alternative
where the camera is positioned in a similar manner as the x-ray set-up.
MR (magnetic resonance) imaging is by far the safest way due to its low
ionization effect on the human protein cells.

• Studies have been performed to show that people that have been sub-
jected to 200 years of background radiation do not suffer side effects from
excessive radioactivity exposure.

• For any scalars α, β, and images I, I ′, the operation B on images is a
linear operation iff

B(αI + βI ′)[x] = αB(I)[x] + βB(I ′)[x]

B is shift invariant if for all ∆ we have SHIFT∆(B(I))[x] = B(SHIFT∆(I))[x].

• Convolution is an LSI, but any LSI is convolution

• Definition of unit impulse (discrete delta function) and UIR (Unit Impulse
Response)

• Any input is the sum of shifted and scaled unit impulses

• Therefore, an arbitrary LSI system performs convolution with its UIR

• Review of image restoration in terms a labeling problem, find f : P 7→ ÃL,
where ÃL here is intensities.

• We want to give a labeling which is fairly smooth (say, piecewise constant).
But that is not the only constraint.
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• There is some notion that we ought to give pixels values that are close to
the ones we observed. We can formalize this using a cost function.

• There is a cost to assign a pixel p a label f(p), we will write this as
C(p, f(p)).

• Typically, the cost function is 0 at the observed data and rises symetrically.
Call the input data I; a standard cost function might be

C(p, f(p)) = (f(p)− I(p))2

or
C(p, f(p)) = |f(p)− I(p)|

• The cost function is related (we’ll do this rigorously in a few weeks, after
we briefly review probability) to the noise function of the camera. Simple
example: suppose we knew the camera always added 1 to the true value
(which is hardly noise).

• Common noise functions: gaussian (good camera, bad camera); salt and
pepper; contamination model

• Stereo and motion overview; why they are similar (smoothing cost function
for a given label)

• It is possible to view local filtering operations as doing fitting. In a fitting
problem, we have some noisy data and we want to fit a model to it. The
model has one or more parameters, i.e. free variables. (In a statistical
setting, fitting is closely related to parameter estimation.)

• Standard example is fitting a line to data. There is a residual for each
point, namely the difference between where it is (in the observed data)
and where we expect it to be (in our model). Associated with a residual
is the same kind of cost function we discussed in the context

• To view local filtering as fitting, we look at each pixel p, and assume that
all the pixels in the window W (p) will get the same value. So now we’re
looking for the best value.

• The best label i for p will be the one that minimizes some kind of cost,
such as ∑

p′∈W (p)

C(p′, i)

If we define C(p′, i) = (i− I(p′))2 (quadratic cost function), we get some-
thing we’ve already seen, namely the average.

• This is because given {xi} the z that minimizes
∑

i(z−xi)2 is the average
of the xi’s.

• What about when the cost function is
∑

i |z − xi|?
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• In this case, given the set {xi} , the z that minimizes
∑

i |z − xi| is the
median of the xi’s. The median for this L1 fit will be the data point where
both the horizontal and vertical co-ordinates are the median values of all
the horizontal and vertical values of {xi} respectively.

• So we can view box filtering as fitting a constant line to each W (p) using
least squares, and median filtering as the same using least absolute values.

• What about non-uniform local averaging (i.e., with a Gaussian?) Weighted
least squares.

• Robust statistics is a branch in statistics that deals with the situation
where there is a mixture of both outliers (bad data points) and inliners
(good data points).

• One method in robust statistics tries to get rid of the problem introduced
by the squaring in LS fitting. This sort of approach is called M-estimation
which utilizes the maximum likelihood of these data samples to fit the
points.

• Influence function : The derivative of a quadratic cost function like the one
in LS fitting is linear. This implies that bad data points that is far away
from the actual line spoils the fitting by a great deal. Take for example
Micheal Jordon’s income totally offset the mean income of the Geology
graduates of UNC 80’s. The idea is to have a influence function that has
a cutoff point, where the points beyond that are equally bad in regardless
of their distance.

• Breakdown point is the fraction of bad data that can be introduced with-
out effect to the fitting algorithm. M-estimation has a lousy breakdown
point.

• There is a natural limit for this breakdown point. There exist an algorithm
that achieves a result that is at least 50 percent of the optimal solution.
Called the least median squared method, we can visualize this method as
a way of finding the thinnest ruler with the smallest width w, such that it
covers more than half of the available data.
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