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0 Announcements: 
 

 PS # 1 handed back 
 Quiz # 3 on Thursday 10/25/01 
 MD guest Lecture Tuesday 10/30/01 ~1:15-3:00pm 
 

1 Review: Optical Flow Constraint Equation 
 

∇I • [u v]  = -It  
Ixu + Iyv  + It = 0    (Assumes constant brightness)  
 

where the intensity gradient, ∇I and It is measurable and image flow (u, v) needs to 
be derived.  The intensity gradient, ∇I, always points in the direction of maximum 
increase of intensity, while the vector (u , v) lies somewhere along a line 
perpendicular to the intensity gradient.  Since there are two unknowns in one 
equation, solutions to OFCE are non-unique and problem is ill posed. 
 

 
  
 Note:  How much motion there is depends on the local intensity component and It. 
 If It is large, then there is big motion. 
 



2 Aperture problem   
 

         Given the OFCE, it is only possible to perceive motion along a single line.  
This is analogous to viewing through a porthole.  If image is getting darker, then we 
know that object is moving to the right.  One can only detect the horizontal motion 
component, no vertical motion component.  Thus, this problem is ill posed and has 
an ambiguous solution.  First find the normal flow then use spatial coherence: 

 

 Solution: 
1. Solve for normal flow components {(u, v) of OFCE} 
2. Smoothing application 
3. Application of choice (i.e. FOE- focus of expansion) 

 
3 Direct Method 
 

  This is a class of methods that are badly named and skips the smoothing 
function step.  Should use only if expected error is small. 

 
4 Two Major Assumptions: 

 
1.   When computing the normal flow, constant brightness is assumed.  Thus, the 

constant brightness of a point does not change with motion. 
 
2.   Framework used to derive OFCE equation is done in continuous math although 

images are discrete.  Thus, must be careful when applying continuous math. 
 
5 Energy Functional: 
 

E(u,v) =   Edata(u , v) + λ Esmooth(u , v)  ∂x ∂y 
 

 Calculus of Variations: 
 

Used to find extreme values of functionals.  The basic tool is use Euler-Lagrange 
Equations to find minima, which holds the position of the extrema as well as other 
positions Å local minima in weak sense.   

 
E(f) = argmin E(f’) where f’ is near f 

 
A small change in local value f does not change the value of E by much. -> gradient 
descent. 

 
Paper by Horn & Schunk (~1977) proposed a measure for the correlation between 
calculated optical flow and the true motion field.  Their normal flow and optical 
flow equation with standard smoothing on vector field measures how rapidly 
coordinates are changing with no notion of discontinuity. 

 
Esmooth = |∇ u |2 + |∇ v |2 

 
Edata = Ix u + Iy v + It 



 Issue arises in local approach for stereo motion -   
 When individual value does not matter causing pixels to be weighted at center. 
 

Depending on lambda, pixel either moves a little or all the way.  Lambda 
determines how important it is for pixel to be spatially coherent.  For example, a 
small lambda would result in smooth output with little sense of borders or other 
detail.  If neighbors have different intensity gradients, but are doing same things, 
will eventually intersect using least squares fitting.   

 

 
 

  Another important variant of the LSF, the Lucas-Kanade Algorithm, 
which is a differential technique, gives terrible answers at discontinuities.  If there 
appears to be two intersections, thus two clusters, the Lucas-Kanade Algorithm 
would give an answer in between the two intersections Å garbage in center. 

 

 
 

  These normal flow algorithms can also be used in other applications such 
as Parametric Motion Models for model fitting.  (will go back in detail later) 

 
 Solution - Use robust Statistics. 



3.0  Applying Statistics To Computer Vision 
 

 Many problems in computer vision involve statistical estimation. 
 

3.1  Relationship between Probability and Statistic 
 

     Probability uses theorems to derive the chances of occurrence on a sample 
based on the population.  Meanwhile, statistics uses justified guess (hypothesis) to 
infer chances of occurrence on population based on sample data.  Thus, probability 
is a branch in mathematics and statistics is a branch in science. 

 
 Population    Sample 

 Probability   Å  
 Statistics   Ä  

 
3.2 Probability Terms 

 

 Ω - an exhaustive set of outcomes 
 samples (also called events, outcomes) – elements of Ω 
 
 Event space F contains all subsets of Ω closed under various operations: 
  if Ω is finite, then event space F is usually the power set (all subsets of Ω) Å 2Ω 
  if Ω is not finite, then event space F has a continuous power set (hard) 
 
 Example.  Flip 2 coins 
 Ω = {TH HH TT HT}   
 Ω is finite, thus event space F is all subsets:  F = {  φ , Ω, {TH, TT}, {HT, HH}} 
                {Tail first}, {Head first} 

 

Events obey some trivial Laws such as commutative, distributive laws and uses 
Venn Diagrams to show intersections. 

 
3.3 Probability Functions 
 
 Probability function P is an unit interval function P: FÅ[0,1] * must be an event 
 P(φ) = 0             P(Ω) = 1             P(A∪B) = P(A) + P(B) - P(A∩ B) 
 
 Where P(A) measures the size of event A relative to Ω. 
 If Ω is non-finite, then use measure theory (not covered) for continuous probability. 
 (Ω, F, P) is the probability space. 
 
3.4 Conditional Probability: 
 

 The probability of event B when event A has already occurred. 
 
 P(B/A)  ≡  P(A ∩ B)    where P(A) ≠ 0  
                        P(A) 
 

 Can also be written as P’(X) = P(X/Y) 


