Lecture 5: Monte Carlo Rendering

CS 6620, Spring 2009

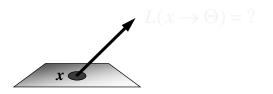
Kavita Bala

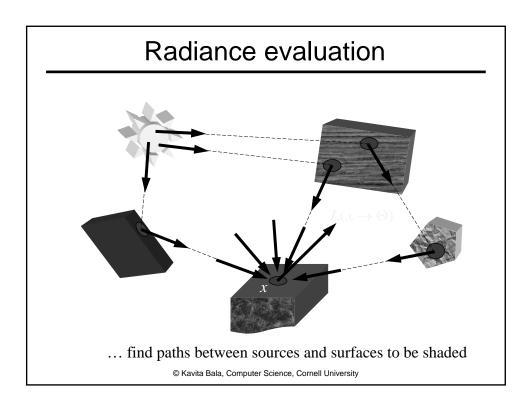
Computer Science

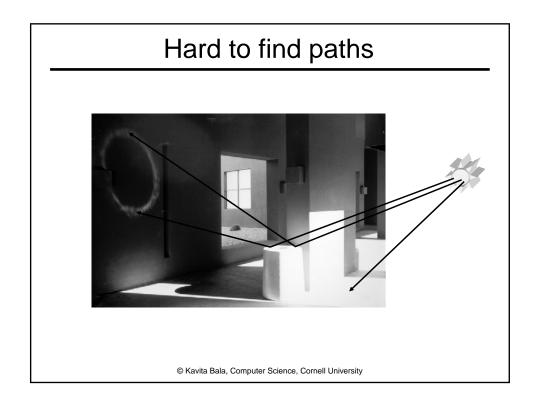
Cornell University

Radiance evaluation

- Fundamental problem in GI algorithms
 - Evaluate radiance at a given surface point in a given direction
 - Invariance defines radiance everywhere else

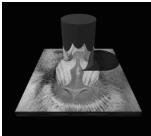


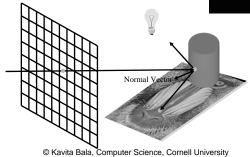




Classic Whitted Ray Tracing

- Shoot ray from eye
 - Find closest visible object
- For each visible point
 - shoot one shadow ray
 - shoot one reflected/refracted ray





Classic Whitted Ray Tracing

- Point lights
 - Unrealistic
 - Hard shadows

- BRDF is simple
 - Pure specular
- Ignores many paths
 - Including diffuse inter-reflections
 - Does not solve the Rendering Equation

Review: Rendering Equation

• Hemisphere integration

$$L(x \to \Theta) = L_{e}(x \to \Theta) + \int_{\Omega_{x}} f_{r}(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_{x}) \cdot d\omega_{\Psi}$$

$$Reflected Energy Energy (Light sources)$$

$$Reflectance Energy (Light sources)$$

$$Reflectance Energy (Light sources)$$

Area integration (over polygons from set A)

$$L(x \to \Theta) = L_{\rho}(x \to \Theta) +$$

$$\int\limits_{A} f_{r}(x, \Psi \leftrightarrow \Theta) \cdot L(y \rightarrow -\Psi) \cdot \frac{\cos \theta_{x} \cdot \cos \theta_{y}}{r_{xy}^{2}} \cdot V(x, y) \cdot dA_{y}$$

© Kavita Bala, Computer Science, Cornell University

Why Monte Carlo?

· Radiance is hard to evaluate

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$L(x \leftarrow \Psi)$$

$$L(x \to \Theta)$$

Sample many paths: integrate over all incoming directions

Why Monte Carlo?

$$L(x \to \Theta) = L_e(x \to \Theta) + \int_{\Omega_x} f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$$

$$L(x \to \Theta)$$

$$L(x \to \Theta)$$

$$L(x \to \Theta)$$

$$L(x \to \Theta)$$

$$\begin{split} &\int\limits_{\Omega_x} L_e(y \to -\Psi) f_r(\Psi \leftrightarrow \Theta) \cdot \cos(\Psi, n_x) \cdot d\omega_\Psi + \\ &\int\limits_{\Omega_x} \int\limits_{\Omega_y} f_r(\Psi' \to -\Psi) \cos(\Psi', n_y') L(y \leftarrow \Psi') d\omega_\psi \cdot f_r(\Psi \leftrightarrow \Theta) \cdot \cos(\Psi, n_x) \cdot d\omega_\Psi \end{split}$$

© Kavita Bala, Computer Science, Cornell University

Why Monte Carlo?

$$\begin{split} L(x \to \Theta) &= L_e(x \to \Theta) + \\ &\int\limits_{\Omega_x} L_e(y \to -\Psi) f_r(\Psi \leftrightarrow \Theta) \cdot \cos(\Psi, n_x) \cdot d\omega_\Psi + \end{split}$$

.

- Analytical integration is difficult
- Therefore, need numerical techniques

- Numerical tool to evaluate integrals
- Use sampling
- Stochastic errors
- Unbiased
 - on average, we get the right answer!

© Kavita Bala, Computer Science, Cornell University

Probability

- Random variable x
- Possible outcomes: $X_1, X_2, X_3, ..., X_n$
 - each with probability: $p_1, p_2, p_3, ..., p_n$
- E.g. 'average die': 2,3,3,4,4,5
 - **outcomes:** $x_1 = 2, x_2 = 3, x_3 = 4, x_3 = 5$
 - probabilities:

$$p_1 = 1/6$$
, $p_2 = 1/3$, $p_3 = 1/3$, $p_3 = 1/6$

Expected value

• Expected value = average value

$$E[x] = \sum_{i=1}^{n} x_i p_i$$

• E.g. die:

$$E[x] = 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{3} + 4 \cdot \frac{1}{3} + 5 \cdot \frac{1}{6} = 3.5$$

© Kavita Bala, Computer Science, Cornell University

Variance

• Expected 'distance' to expected value

$$\sigma^{2}[x] = E[(x - E[x])^{2}]$$

• E.g. die:

$$\sigma^{2}[x] = (2 - 3.5)^{2} \cdot \frac{1}{6} + (3 - 3.5)^{2} \cdot \frac{1}{3} + (4 - 3.5)^{2} \cdot \frac{1}{3} + (5 - 3.5)^{2} \cdot \frac{1}{6}$$

$$= 0.916$$

• Property: $\sigma^2[x] = E[x^2] - E[x]^2$

Continuous random variable

- Random variable $x \in [a,b]$
- Probability density function (pdf) p(x)
- Probability that variable has value x: p(x)dx

$$\int_{a}^{b} p(x)dx = 1$$

- Cumulative distribution function (CDF)
 - CDF is non-decreasing, positive

$$Pr(x \le y) = CDF(y) = \int_{-\infty}^{y} p(x)dx$$

© Kavita Bala, Computer Science, Cornell University

Continuous random variable

• Expected value: $E[x] = \int xp(x)dx$

$$E[g(x)] = \int_{a}^{b} g(x)p(x)dx$$

Variance:

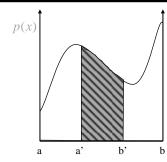
$$\sigma^{2}[x] = \int_{a}^{b} (x - E[x])^{2} p(x) dx$$

$$\sigma^{2}[x] = \int_{a}^{b} (x - E[x])^{2} p(x) dx$$

$$\sigma^{2}[g(x)] = \int_{a}^{b} (g(x) - E[g(x)])^{2} p(x) dx$$

• Deviation: $\sigma[x], \sigma[g(x)]$

Continuous random variable



$$\int_{a}^{b} p(x)dx = 1$$

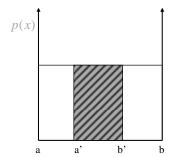
$$Pr(x \le y) = CDF(y) = \int_{-\infty}^{y} p(x)dx$$

Probability that x belongs to [a',b'] = $Pr(x \le b') - Pr(x \le a')$

$$=\int_{-\infty}^{b'} p(x)dx - \int_{-\infty}^{a'} p(x)dx = \int_{a'}^{b'} p(x)dx$$

© Kavita Bala, Computer Science, Cornell University

Uniform distribution



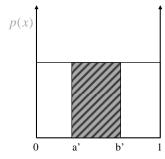
$$\int_{a}^{b} p(x)dx = 1$$

$$p(x) = \frac{1}{b - a}$$

Probability that x belongs to [a',b'] = $\int_{a'}^{b'} \frac{1}{(b-a)} dx = \frac{(b'-a')}{(b-a)}$

$$\Pr(x \le y) = CDF(y) = \int_{-\infty}^{y} p(x)dx = \frac{(y-a)}{(b-a)}$$

Uniform distribution



$$\int_{a}^{b} p(x)dx = 1$$

$$p(x) = \frac{1}{1 - 0} = 1$$

$$\Pr(x \in [a',b']) = \int_{a'}^{b'} 1 dx = (b'-a')$$

$$Pr(x \le y) = CDF(y) = \int_{0}^{y} p(x)dx = y$$

© Kavita Bala, Computer Science, Cornell University

More than one sample

- Consider the weighted sum of N samples
- x are iids
- Expected value $E[\frac{1}{N}(x^1 + x^2 + x^3 + ... x^N)] = E[x]$
- Variance $\sigma^2[\frac{1}{N}(x^1 + x^2 + x^3 + ... x^N)] = \frac{1}{N}\sigma^2[x]$
- Deviation $\sigma[\frac{1}{N}(x^1 + x^2 + x^3 + \dots x^N)] = \frac{1}{\sqrt{N}}\sigma[x]$

More than one sample

Consider the weighted sum of N samples

$$g(x) = \frac{1}{N} (f(x_1) + f(x_2) + f(x_3) + \dots + f(x_N))$$

Expected value

$$E[g(x)] = E[\frac{1}{N}\sum_{i}^{N} f(x_i)] = E[f(x)]$$

Variance

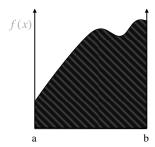
$$\sigma^{2}[g(x)] = \sigma^{2}\left[\frac{1}{N}\sum_{i}^{N}f(x_{i})\right] = \frac{1}{N}\sigma^{2}[f(x)]$$

• Deviation
$$\sigma[g(x)] = \frac{1}{\sqrt{N}}\sigma[f(x)]$$

Numerical Integration

• A one-dimensional integral:

$$I = \int_{a}^{b} f(x) dx$$

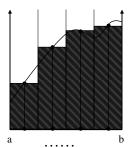


Deterministic Integration

• Quadrature rules:

$$I = \int_{a}^{b} f(x)dx$$

$$\approx \sum_{i=1}^{N} w_{i} f(x_{i}) = \sum_{i=1}^{N} \frac{b-a}{N} f(x_{i})$$



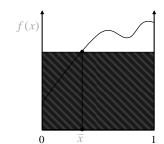
© Kavita Bala, Computer Science, Cornell University

Monte Carlo Integration

An estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(\overline{x})$$



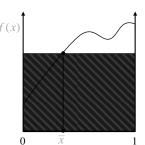
$$E(I_{prim}) = \int_{0}^{1} f(x) p(x) dx = \int_{0}^{1} f(x) 1 dx = I$$

Unbiased estimator!

Called primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(\overline{x})$$



$$E(I_{prim}) = \int_{0}^{1} f(x) p(x) dx = \int_{0}^{1} f(x) 1 dx = I$$

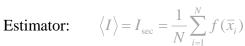
Unbiased estimator!

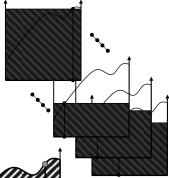
© Kavita Bala, Computer Science, Cornell University

More samples

Secondary estimator

Generate N random samples x_i





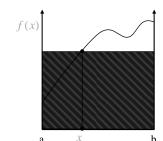
Variance
$$\sigma_{\rm sec}^2 = \sigma_{\it prim}^2 / N$$



Primary estimator:

$$I = \int_{a}^{b} f(x) dx$$

$$I_{prim} = f(x_s)(b-a)$$



$$E(I_{prim}) = \int_{a}^{b} f(x)(b-a)p(x)dx = \int_{a}^{b} f(x)(b-a)\frac{1}{(b-a)}dx = I$$

Unbiased estimator!

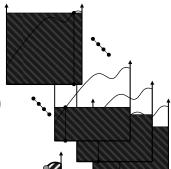
© Kavita Bala, Computer Science, Cornell University

More samples

Secondary estimator

Generate N random samples x_i

Estimator:
$$\langle I \rangle = I_{\text{sec}} = \frac{1}{N} \sum_{i=1}^{N} f(x^{s_i})(b-a)$$



Variance
$$\sigma_{\rm sec}^2 = \sigma_{\it prim}^2 / N$$

Expected value of estimator

$$E[\langle I \rangle] = E[\frac{1}{N} \sum_{i}^{N} \frac{f(x_{i})}{p(x_{i})}] = \frac{1}{N} \int (\sum_{i}^{N} \frac{f(x_{i})}{p(x_{i})}) p(x) dx$$
$$= \frac{1}{N} \sum_{i}^{N} \int (\frac{f(x)}{p(x)}) p(x) dx$$
$$= \frac{N}{N} \int f(x) dx = I$$

- on 'average' get right result: unbiased

 Standard deviation σ is a measure of the stochastic error

 $\sigma^{2} = \frac{1}{N} \int_{a}^{b} \left[\frac{f(x)}{p(x)} - I \right]^{2} p(x) dx$

© Kavita Bala, Computer Science, Cornell University

Convergence Rates

- RMS error converges at a rate of O($\frac{1}{\sqrt{N}}$)
- Unbiased
- · Chebychev's inequality

$$\begin{split} & \Pr \Bigg[\left| F - E(F) \right| \geq \sqrt{\frac{1}{\mathcal{S}}} \sigma \, \Bigg] \leq \mathcal{S} \\ & \Pr \Bigg[\left| I_{estimator} - I \right| \geq \frac{1}{\sqrt{N}} \sqrt{\frac{1}{\mathcal{S}}} \sigma \, \Bigg] \leq \mathcal{S} \end{split}$$

Strong law of large numbers

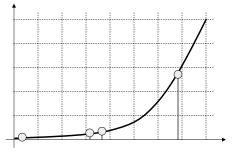
$$\Pr\left[\lim_{N\to\infty}\frac{1}{N}\sum_{i}^{N}\frac{f(x_{i})}{p(x_{i})}=I\right]=1$$

MC Integration - Example

- Integral

$$I = \int_{0}^{1} 5x^{4} dx = 1$$

- Uniform sampling
- Samples :



$$x_1 = .86$$

$$x_1 = .86$$
 = 2.74

$$x_2 = .41$$

$$x_2 = .41$$
 = 1.44

$$x_3 = .02$$

$$< I > = 0.96$$

$$x_4 = .38$$

$$<$$
I $> = 0.75$

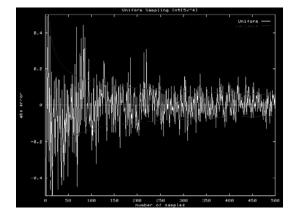
© Kavita Bala, Computer Science, Cornell University

MC Integration - Example

Integral

$$I = \int_{0}^{1} 5x^{4} dx = 1$$

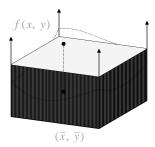
- Stochastic error
- Variance
 - What is it?



MC Integration: 2D

• Primary estimator:

$$\bar{I}_{prim} = \frac{f(\bar{x}, \bar{y})}{p(\bar{x}, \bar{y})}$$

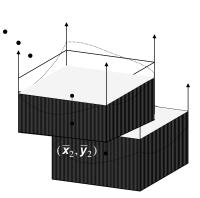


© Kavita Bala, Computer Science, Cornell University

MC Integration: 2D

• Secondary estimator:

$$I_{\text{sec}} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\overline{x}_i, \overline{y}_i)}{p(\overline{x}_i, \overline{y}_i)}$$



- MC Integration works well for higher dimensions
- Unlike quadrature

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i, y_i)}{p(x_i, y_i)}$$

© Kavita Bala, Computer Science, Cornell University

MC Advantages

- Convergence rate of O($\frac{1}{\sqrt{N}}$)
- Simple
 - Sampling
 - Point evaluation
 - Can use black boxes
- General
 - Works for high dimensions
 - Deals with discontinuities, crazy functions,...