Lecture 5: Monte Carlo
Rendering

CS 6620, Spring 2009

Kavita Bala
Computer Science

Cornell University

Radiance evaluation

* Fundamental problem in GI algorithms

— Evaluate radiance at a given surface point in a
given direction

— Invariance defines radiance everywhere else
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Radiance evaluation

.. find paths between sources and surfaces to be shaded
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Hard to find paths
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Classic Whitted Ray Tracing

« Shoot ray from eye
— Find closest visible object
» For each visible point
— shoot one shadow ray
— shoot one reflected/refracted ray
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Classic Whitted Ray Tracing

* Point lights
— Unrealistic
— Hard shadows

o \a
 BRDF is simple

— Pure specular

 Ignores many paths
— Including diffuse inter-reflections
— Does not solve the Rendering Equation
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Review: Rendering Equation

* Hemisphere integration

| J | J
| J | J
Reflected Self-Emitted
Energy Energy
(Light sources)

Bidirectional Incoming Energy
Reflectance

» Area integration (over polygons from set A)
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Why Monte Carlo?

 Radiance is hard to evaluate

et ok

« Sample many paths: integrate over all incoming
directions

© Kavita Bala, Computer Science, Cornell University




Why Monte Carlo?
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Why Monte Carlo?

 Analytical integration is difficult

» Therefore, need numerical techniques
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Monte Carlo Integration

Numerical tool to evaluate integrals

Use sampling

Stochastic errors

Unbiased
— on average, we get the right answer!

© Kavita Bala, Computer Science, Cornell University

Probability

e Random variable x

* Possible outcomes:
— each with probability:

* E.g. ‘average die’: 2,3,3,4,4,5
— outcomes:

— probabilities:
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Expected value

» Expected value = average value

e E.g. die:
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Variance

» Expected ‘distance’ to expected value

« E.g. die:

* Property:
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Continuous random variable

Random variable
Probability density function (pdf)
Probability that variable has value x:

Cumulative distribution function (CDF)
— CDF is non-decreasing, positive

© Kavita Bala, Computer Science, Cornell University

Continuous random variable

» Expected value:

e Variance:

e Deviation:
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Continuous random variable

Probability that x belongs to [a’,b’]
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Uniform distribution
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Probability that x belongs to [a’,b’]
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Uniform distribution
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More than one sample

Consider the weighted sum of N samples
X are iids
Expected value

Variance

Deviation
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More than one sample

Consider the weighted sum of N samples

Expected value

Variance

Deviation
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Numerical Integration

* A one-dimensional integral:
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Deterministic Integration

e Quadrature rules:
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Monte Carlo Integration

An estimator:

Unbiased estimator!
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Monte Carlo Integration

Called primary estimator:

Unbiased estimator!
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More samples

Secondary estimator

Generate N random samples X;

Estimator:

Variance
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Monte Carlo Integration

Primary estimator:

Unbiased estimator!
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More samples

Secondary estimator

Generate N random samples X;

Estimator:

Variance
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Monte Carlo Integration

» Expected value of estimator

— on ‘average’ get right result: unbiased

» Standard deviation ¢ is a measure of the
stochastic error
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Convergence Rates

RMS error converges at a rate of O( )
Unbiased
Chebychev’s inequality

Strong law of large numbers
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MC Integration - Example

— Integral

— Uniform sampling

— Samples : ///
1o oSel i
X, = .86 <I>=2.74
X, = .41 <I>=1.44
Xy= .02 <I>=0.96
X,= .38 <I>=0.75
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MC Integration - Example

— Stochastic ||‘ |||}I ‘ ”
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MC Integration: 2D

e Primary estimator:
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MC Integration: 2D

« Secondary estimator:
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Monte Carlo Integration - 2D

* MC Integration works well for higher
dimensions

* Unlike quadrature
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MC Advantages
» Convergence rate of O( - )
* Simple
— Sampling

— Point evaluation
— Can use black boxes
» General
— Works for high dimensions
— Deals with discontinuities, crazy functions,...
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