Lecture 11: Irradiance Caching

CS 6620, Spring 2009
Kavita Bala
Computer Science
Cornell University

Pure Path Tracing

• Advantages
 – No need for meshing
 – General surfaces – requires ray intersections
 – *Unbiased* estimates

• Disadvantages
 – Too noisy/slow
 – Noise is objectionable
 – Treats every pixel independently, and every point on every surface independently
 ▪ Starts from scratch – does not exploit coherence
Biased Methods

• Biased methods: store information (caching)
 – Better type of noise: blurring

• Techniques
 – Greg Ward’s Radiance
 – Photon Mapping
 – Radiosity (even)
 – Assumption: common case is diffuse

Path Re-Use

• What is coherence?
 – Nearby values are similar to what we want
Irradiance Caching

• Introduced by Greg Ward 1988

• Implemented in RADIANCE
 – Public-domain software

• Exploits smoothness of irradiance
 – Cache and interpolate irradiance estimates
 – Also has error, but the right kind of error

Direct Illumination

© Kavita Bala, Computer Science, Cornell University
GI

Indirect Irradiance
Smoothness

• Diffuse reflectance varies slowly over a surface
 – Incoming direction varies slowly
 – Reuse paths: “Cache” directionally invariant irradiance when possible

• Irradiance tends to vary slowly over a surface
 – e.g., directional light gives constant irradiance over a planar surface
 – point light varies slowly with the cosine of the angle

Basic Idea

• When we need irradiance at a new point
 – Compute irradiance estimate using cached samples

• The sub-problems are:
 – How do you get the samples in the first place?
 – How to you store/cache them?
 – How do we compute the irradiance estimate?
 – When do we use this cache of irradiance values?
Basic Idea

- Store information about previous paths
 - Compute using Monte Carlo
- Maintain a spatial data structure storing irradiance arriving at points
- If you hit a diffuse surface
 - Compute direct illumination
 - Try to estimate irradiance at that point
 - If the estimate is good, use it
 - If not, use path tracing to estimate the irradiance and store it

Where to store it?

- Some sort of spatial data structure
 - Support insertion of new samples, and search for nearby samples, indexed on position
 - RADIANCE system uses Octrees
Storing Samples

- Question of precisely what to store:
 - Irradiance (E_i)
 - The location (x_i)
 - The normal at that location (n_i)
 - The distance that we went to find nearby surfaces (R_i)

Spatial Hierarchy

- Hierarchical spatial subdivision
 - Divides up space
- Children are distinct and cover parent
Where do samples come from?

- Irradiance computed using MC
 \[
 E = \int L(x \leftarrow \Psi) \cdot \cos \theta \cdot d\omega_p
 \]
 \[
 E = \int \int L(x \leftarrow \Psi) \cdot \cos \theta \cdot \sin \theta \cdot d\theta d\phi
 \]
 \[
 E = \frac{\pi}{TP} \sum_i \sum_p L_i(\theta_i, \phi_p)
 \]
- Path tracing to compute samples
 - Stratify outgoing directions according to cosine

Cosine distribution

\[
f = \frac{1}{\pi} \int_0^{2\pi} \int_0^\pi \cos \theta \sin \theta d\theta d\phi
\]
\[
p(\theta, \phi) = \frac{\cos \theta \sin \theta}{\pi}
\]
\[
CDF(\theta, \phi) = \int_0^\theta \int_0^\phi \cos \theta \sin \theta \pi d\theta d\phi = (1 - \cos^2 \theta) \frac{\phi}{2\pi}
\]
\[
F(\theta) = 1 - \cos^2 \theta
\]
\[
F(\phi) = \frac{\phi}{2\pi}
\]
\[
\phi_i = 2\pi u_1 \quad \theta_i = \cos^{-1} \sqrt{u_2}
\]
What information to store?

$$\theta_i = \sin^{-1}\left(\frac{t - u_2}{\sqrt{T}}\right)$$

$$\phi_p = 2\pi \frac{P - u_1}{P}$$

- Compute Li using Monte Carlo

Quality of Existing Data

- The quality of an estimate is based on geometric considerations
- Examine:
 - Surface curvature between the required point and the existing data
 - diffuse illumination changes with curvature
 - Brightness and the distance to other surfaces
 - Influences how fast incoming illumination can change
- If existing values are used, weigh contribution by quality
Geometric Factors

Points and normals should be close

Distance to nearby surfaces should be large – corners lead to fast changes in irradiance

Validity of Sample

- Assign a region where a sample can be reused
- Larger region where irradiance varies smoothly
- Smaller region when it varies a lot
Distance to surfaces

- Harmonic mean heuristic
- Range of sample is given by a radius R_i

$$\frac{1}{R_i} = \frac{1}{N} \sum \frac{1}{d_j}$$

- Where d_j is distance to closest surface
- Why not just average?

Smoothness Measure

- Find nearby samples
 - Query octree for samples that overlap p
 - Check ε at x, x_i is a nearby sample

$$\varepsilon_i(x, \vec{n}) = \left\| \frac{x_i - x}{R_i} \right\| + \sqrt{1 - \vec{n} \cdot \vec{n}_i}$$

- Weight samples inversely proportional to ε_i
Smoothness Measure

• Find nearby samples

\[E(x, \vec{n}) = \frac{\sum_{i,w_i>1/a,isValid(i)} w_i(x, \vec{n})E_i(x_i)}{\sum_{i,w_i>1/a,isValid(i)} w_i(x, \vec{n})} \]
How to compute the irradiance estimate?

- When new sample requested
 - Query octree for samples near location
 - Check ε at x, x_i is a nearby sample

$$\varepsilon_i(x, \vec{n}) = \frac{||x_i - x||}{R_i} + \sqrt{1 - \vec{n} \cdot \vec{n}_i}$$

- Weight samples inversely proportional to ε_i

$$E(x, \vec{n}) = \frac{\sum_{i, w_i > 1/a} w_i(x, \vec{n})E_i(x_i)}{\sum_{i, w_i > 1/a} w_i(x, \vec{n})}$$

- Otherwise, compute new sample
1000 sample rays, $w > 10$

1000 sample rays, $w > 20$
Radiance Examples
Radiance: Example

Summary algorithm

• Assume: cache diffuse irradiance

• Start with a basic path tracing algorithm, but …
 – Store irradiance in octree
 – If hit diffuse surface, build an estimate of irradiance at that point
 – Always compute direct lighting explicitly
 – If estimate is good, use it
 – If not, use path tracing to estimate the irradiance and store it
Implementation Notes

• In a full system, how to handle diffuse-only?
 – Error goes up as reflectance varies more from diffuse

• Specular bounces are traced through to a diffuse surface
 – Be careful not to double count

• Must account for transmission and reflection
 – Separate irradiance estimates for both sides of a surface

© Kavita Bala, Computer Science, Cornell University